Optimal training of variational quantum algorithms without barren
plateaus
- URL: http://arxiv.org/abs/2104.14543v1
- Date: Thu, 29 Apr 2021 17:54:59 GMT
- Title: Optimal training of variational quantum algorithms without barren
plateaus
- Authors: Tobias Haug, M.S. Kim
- Abstract summary: Variational quantum algorithms (VQAs) promise efficient use of near-term quantum computers.
We show how to optimally train a VQA for learning quantum states.
We propose the application of Gaussian kernels for quantum machine learning.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Variational quantum algorithms (VQAs) promise efficient use of near-term
quantum computers. However, training these algorithms often requires an
extensive amount of time and suffers from the barren plateau problem where the
magnitude of the gradients vanishes with increasing number of qubits. Here, we
show how to optimally train a VQA for learning quantum states. Parameterized
quantum circuits can form Gaussian kernels, which we use to derive optimal
adaptive learning rates for gradient ascent. We introduce the generalized
quantum natural gradient that features stability and optimized movement in
parameter space. Both methods together outperform other optimization routines
and can enhance VQAs as well as quantum control techniques. The gradients of
the VQA do not vanish when the fidelity between the initial state and the state
to be learned is bounded from below. We identify a VQA for quantum simulation
with such a constraint that can be trained free of barren plateaus. Finally, we
propose the application of Gaussian kernels for quantum machine learning.
Related papers
- Efficient charge-preserving excited state preparation with variational quantum algorithms [33.03471460050495]
We introduce a charge-preserving VQD (CPVQD) algorithm, designed to incorporate symmetry and the corresponding conserved charge into the VQD framework.
Results show applications in high-energy physics, nuclear physics, and quantum chemistry.
arXiv Detail & Related papers (2024-10-18T10:30:14Z) - Adaptive quantum optimization algorithms for programmable atom-cavity systems [6.508793834090864]
We show cold atoms in an optical cavity can be built as a universal quantum with programmable all-to-all interactions.
We find the success probability of the standard quantum approximate algorithm (QAOA) decays rapidly with the problem size.
Inspired by the counterdiabatic driving, we propose an adaptive ansatz of QAOA which releases the parameter freedom of the NPP Hamiltonian to match higher-order counterdiabatic terms.
arXiv Detail & Related papers (2024-06-11T08:37:31Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
We focus on variational quantum circuits (VQC), which emerged as the most promising candidates for the quantum counterpart of neural networks.
Although showing promising results, VQCs can be hard to train because of different issues, e.g., barren plateau, periodicity of the weights, or choice of architecture.
We propose a gradient-free algorithm inspired by natural evolution to optimize both the weights and the architecture of the VQC.
arXiv Detail & Related papers (2023-04-14T08:03:20Z) - Quantum Imitation Learning [74.15588381240795]
We propose quantum imitation learning (QIL) with a hope to utilize quantum advantage to speed up IL.
We develop two QIL algorithms, quantum behavioural cloning (Q-BC) and quantum generative adversarial imitation learning (Q-GAIL)
Experiment results demonstrate that both Q-BC and Q-GAIL can achieve comparable performance compared to classical counterparts.
arXiv Detail & Related papers (2023-04-04T12:47:35Z) - TeD-Q: a tensor network enhanced distributed hybrid quantum machine
learning framework [59.07246314484875]
TeD-Q is an open-source software framework for quantum machine learning.
It seamlessly integrates classical machine learning libraries with quantum simulators.
It provides a graphical mode in which the quantum circuit and the training progress can be visualized in real-time.
arXiv Detail & Related papers (2023-01-13T09:35:05Z) - Alternating Layered Variational Quantum Circuits Can Be Classically
Optimized Efficiently Using Classical Shadows [4.680722019621822]
Variational quantum algorithms (VQAs) are the quantum analog of classical neural networks (NNs)
We introduce a training algorithm with an exponential reduction in training cost of such VQAs.
arXiv Detail & Related papers (2022-08-24T15:47:44Z) - Fundamental limitations on optimization in variational quantum
algorithms [7.165356904023871]
A leading paradigm to establish such near-term quantum applications is variational quantum algorithms (VQAs)
We prove that for a broad class of such random circuits, the variation range of the cost function vanishes exponentially in the number of qubits with a high probability.
This result can unify the restrictions on gradient-based and gradient-free optimizations in a natural manner and reveal extra harsh constraints on the training landscapes of VQAs.
arXiv Detail & Related papers (2022-05-10T17:14:57Z) - Adiabatic Quantum Graph Matching with Permutation Matrix Constraints [75.88678895180189]
Matching problems on 3D shapes and images are frequently formulated as quadratic assignment problems (QAPs) with permutation matrix constraints, which are NP-hard.
We propose several reformulations of QAPs as unconstrained problems suitable for efficient execution on quantum hardware.
The proposed algorithm has the potential to scale to higher dimensions on future quantum computing architectures.
arXiv Detail & Related papers (2021-07-08T17:59:55Z) - Unitary Block Optimization for Variational Quantum Algorithms [0.0]
We describe the unitary block optimization scheme (UBOS) and apply it to two variational quantum algorithms.
The goal of VQE is to optimize a classically intractable parameterized quantum wave function to target a physical state of a Hamiltonian.
We additionally describe how UBOS applies to real and imaginary time-evolution.
arXiv Detail & Related papers (2021-02-16T19:00:05Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.