Evaluating Fairness of Machine Learning Models Under Uncertain and
Incomplete Information
- URL: http://arxiv.org/abs/2102.08410v1
- Date: Tue, 16 Feb 2021 19:02:55 GMT
- Title: Evaluating Fairness of Machine Learning Models Under Uncertain and
Incomplete Information
- Authors: Pranjal Awasthi, Alex Beutel, Matthaeus Kleindessner, Jamie
Morgenstern, Xuezhi Wang
- Abstract summary: We show that the test accuracy of the attribute classifier is not always correlated with its effectiveness in bias estimation for a downstream model.
Our analysis has surprising and counter-intuitive implications where in certain regimes one might want to distribute the error of the attribute classifier as unevenly as possible.
- Score: 25.739240011015923
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Training and evaluation of fair classifiers is a challenging problem. This is
partly due to the fact that most fairness metrics of interest depend on both
the sensitive attribute information and label information of the data points.
In many scenarios it is not possible to collect large datasets with such
information. An alternate approach that is commonly used is to separately train
an attribute classifier on data with sensitive attribute information, and then
use it later in the ML pipeline to evaluate the bias of a given classifier.
While such decoupling helps alleviate the problem of demographic scarcity, it
raises several natural questions such as: how should the attribute classifier
be trained?, and how should one use a given attribute classifier for accurate
bias estimation? In this work we study this question from both theoretical and
empirical perspectives.
We first experimentally demonstrate that the test accuracy of the attribute
classifier is not always correlated with its effectiveness in bias estimation
for a downstream model. In order to further investigate this phenomenon, we
analyze an idealized theoretical model and characterize the structure of the
optimal classifier. Our analysis has surprising and counter-intuitive
implications where in certain regimes one might want to distribute the error of
the attribute classifier as unevenly as possible among the different subgroups.
Based on our analysis we develop heuristics for both training and using
attribute classifiers for bias estimation in the data scarce regime. We
empirically demonstrate the effectiveness of our approach on real and simulated
data.
Related papers
- Balancing Fairness and Accuracy in Data-Restricted Binary Classification [14.439413517433891]
This paper proposes a framework that models the trade-off between accuracy and fairness under four practical scenarios.
Experiments on three datasets demonstrate the utility of the proposed framework as a tool for quantifying the trade-offs.
arXiv Detail & Related papers (2024-03-12T15:01:27Z) - Causal Effect Regularization: Automated Detection and Removal of
Spurious Attributes [13.852987916253685]
In many classification datasets, the task labels are spuriously correlated with some input attributes.
We propose a method to automatically identify spurious attributes by estimating their causal effect on the label.
Our method mitigates the reliance on spurious attributes even under noisy estimation of causal effects.
arXiv Detail & Related papers (2023-06-19T17:17:42Z) - Stubborn Lexical Bias in Data and Models [50.79738900885665]
We use a new statistical method to examine whether spurious patterns in data appear in models trained on the data.
We apply an optimization approach to *reweight* the training data, reducing thousands of spurious correlations.
Surprisingly, though this method can successfully reduce lexical biases in the training data, we still find strong evidence of corresponding bias in the trained models.
arXiv Detail & Related papers (2023-06-03T20:12:27Z) - Hyper-parameter Tuning for Fair Classification without Sensitive Attribute Access [12.447577504758485]
We propose a framework to train fair classifiers without access to sensitive attributes on either training or validation data.
We show theoretically and empirically that these proxy labels can be used to maximize fairness under average accuracy constraints.
arXiv Detail & Related papers (2023-02-02T19:45:50Z) - Semi-FairVAE: Semi-supervised Fair Representation Learning with
Adversarial Variational Autoencoder [92.67156911466397]
We propose a semi-supervised fair representation learning approach based on adversarial variational autoencoder.
We use a bias-aware model to capture inherent bias information on sensitive attribute.
We also use a bias-free model to learn debiased fair representations by using adversarial learning to remove bias information from them.
arXiv Detail & Related papers (2022-04-01T15:57:47Z) - Selecting the suitable resampling strategy for imbalanced data
classification regarding dataset properties [62.997667081978825]
In many application domains such as medicine, information retrieval, cybersecurity, social media, etc., datasets used for inducing classification models often have an unequal distribution of the instances of each class.
This situation, known as imbalanced data classification, causes low predictive performance for the minority class examples.
Oversampling and undersampling techniques are well-known strategies to deal with this problem by balancing the number of examples of each class.
arXiv Detail & Related papers (2021-12-15T18:56:39Z) - Learning Debiased and Disentangled Representations for Semantic
Segmentation [52.35766945827972]
We propose a model-agnostic and training scheme for semantic segmentation.
By randomly eliminating certain class information in each training iteration, we effectively reduce feature dependencies among classes.
Models trained with our approach demonstrate strong results on multiple semantic segmentation benchmarks.
arXiv Detail & Related papers (2021-10-31T16:15:09Z) - You Can Still Achieve Fairness Without Sensitive Attributes: Exploring
Biases in Non-Sensitive Features [29.94644351343916]
We propose a novel framework which simultaneously uses these related features for accurate prediction and regularizing the model to be fair.
Experimental results on real-world datasets demonstrate the effectiveness of the proposed model.
arXiv Detail & Related papers (2021-04-29T17:52:11Z) - Robustness to Spurious Correlations in Text Classification via
Automatically Generated Counterfactuals [8.827892752465958]
We propose to train a robust text classifier by augmenting the training data with automatically generated counterfactual data.
We show that the robust classifier makes meaningful and trustworthy predictions by emphasizing causal features and de-emphasizing non-causal features.
arXiv Detail & Related papers (2020-12-18T03:57:32Z) - Theoretical Insights Into Multiclass Classification: A High-dimensional
Asymptotic View [82.80085730891126]
We provide the first modernally precise analysis of linear multiclass classification.
Our analysis reveals that the classification accuracy is highly distribution-dependent.
The insights gained may pave the way for a precise understanding of other classification algorithms.
arXiv Detail & Related papers (2020-11-16T05:17:29Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
We develop a methodology to compute precisely the full distribution of test errors among interpolating classifiers.
We find that test errors tend to concentrate around a small typical value $varepsilon*$, which deviates substantially from the test error of worst-case interpolating model.
Our results show that the usual style of analysis in statistical learning theory may not be fine-grained enough to capture the good generalization performance observed in practice.
arXiv Detail & Related papers (2020-06-22T21:12:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.