Intriguing Properties of Robust Classification
- URL: http://arxiv.org/abs/2412.04245v2
- Date: Thu, 17 Jul 2025 09:22:28 GMT
- Title: Intriguing Properties of Robust Classification
- Authors: Bernd Prach, Christoph H. Lampert,
- Abstract summary: We show that in certain settings robust generalization is only possible with unrealistically large amounts of data.<n>Our findings indicate that the amount of training data is the main factor determining the robust performance.
- Score: 19.858602457988194
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite extensive research since the community learned about adversarial examples 10 years ago, we still do not know how to train high-accuracy classifiers that are guaranteed to be robust to small perturbations of their inputs. Previous works often argued that this might be because no classifier exists that is robust and accurate at the same time. However, in computer vision this assumption does not match reality where humans are usually accurate and robust on most tasks of interest. We offer an alternative explanation and show that in certain settings robust generalization is only possible with unrealistically large amounts of data. Specifically, we find a setting where a robust classifier exists, it is easy to learn an accurate classifier, yet it requires an exponential amount of data to learn a robust classifier. Based on this theoretical result, we evaluate the influence of the amount of training data on datasets such as CIFAR-10. Our findings indicate that the amount of training data is the main factor determining the robust performance. Furthermore we show that there are low magnitude directions in the data which are useful for non-robust generalization but are not available for robust classifiers. We provide code at https://github.com/berndprach/IntriguingProperties.
Related papers
- Gentle Local Robustness implies Generalization [1.2630732866686982]
We present a class of novel bounds, which are model-dependent and provably tighter than the existing robustness-based ones.
Unlike prior ones, our bounds are guaranteed to converge to the true error of the best classifier, as the number of samples increases.
We further provide an extensive experiment and find that two of our bounds are often non-vacuous for a large class of deep neural networks, pretrained from ImageNet.
arXiv Detail & Related papers (2024-12-09T10:59:39Z) - XAL: EXplainable Active Learning Makes Classifiers Better Low-resource Learners [71.8257151788923]
We propose a novel Explainable Active Learning framework (XAL) for low-resource text classification.<n>XAL encourages classifiers to justify their inferences and delve into unlabeled data for which they cannot provide reasonable explanations.<n>Experiments on six datasets show that XAL achieves consistent improvement over 9 strong baselines.
arXiv Detail & Related papers (2023-10-09T08:07:04Z) - Characterizing Data Point Vulnerability via Average-Case Robustness [29.881355412540557]
adversarial robustness is a standard framework, which views robustness of predictions through a binary lens.
We consider a complementary framework for robustness, called average-case robustness, which measures the fraction of points in a local region.
We show empirically that our estimators are accurate and efficient for standard deep learning models.
arXiv Detail & Related papers (2023-07-26T01:10:29Z) - Characterizing the Optimal 0-1 Loss for Multi-class Classification with
a Test-time Attacker [57.49330031751386]
We find achievable information-theoretic lower bounds on loss in the presence of a test-time attacker for multi-class classifiers on any discrete dataset.
We provide a general framework for finding the optimal 0-1 loss that revolves around the construction of a conflict hypergraph from the data and adversarial constraints.
arXiv Detail & Related papers (2023-02-21T15:17:13Z) - Parametric Classification for Generalized Category Discovery: A Baseline
Study [70.73212959385387]
Generalized Category Discovery (GCD) aims to discover novel categories in unlabelled datasets using knowledge learned from labelled samples.
We investigate the failure of parametric classifiers, verify the effectiveness of previous design choices when high-quality supervision is available, and identify unreliable pseudo-labels as a key problem.
We propose a simple yet effective parametric classification method that benefits from entropy regularisation, achieves state-of-the-art performance on multiple GCD benchmarks and shows strong robustness to unknown class numbers.
arXiv Detail & Related papers (2022-11-21T18:47:11Z) - Utilizing Class Separation Distance for the Evaluation of Corruption
Robustness of Machine Learning Classifiers [0.6882042556551611]
We propose a test data augmentation method that uses a robustness distance $epsilon$ derived from the datasets minimal class separation distance.
The resulting MSCR metric allows a dataset-specific comparison of different classifiers with respect to their corruption robustness.
Our results indicate that robustness training through simple data augmentation can already slightly improve accuracy.
arXiv Detail & Related papers (2022-06-27T15:56:16Z) - Prototypical Classifier for Robust Class-Imbalanced Learning [64.96088324684683]
We propose textitPrototypical, which does not require fitting additional parameters given the embedding network.
Prototypical produces balanced and comparable predictions for all classes even though the training set is class-imbalanced.
We test our method on CIFAR-10LT, CIFAR-100LT and Webvision datasets, observing that Prototypical obtains substaintial improvements compared with state of the arts.
arXiv Detail & Related papers (2021-10-22T01:55:01Z) - Evaluating Fairness of Machine Learning Models Under Uncertain and
Incomplete Information [25.739240011015923]
We show that the test accuracy of the attribute classifier is not always correlated with its effectiveness in bias estimation for a downstream model.
Our analysis has surprising and counter-intuitive implications where in certain regimes one might want to distribute the error of the attribute classifier as unevenly as possible.
arXiv Detail & Related papers (2021-02-16T19:02:55Z) - Don't Just Blame Over-parametrization for Over-confidence: Theoretical
Analysis of Calibration in Binary Classification [58.03725169462616]
We show theoretically that over-parametrization is not the only reason for over-confidence.
We prove that logistic regression is inherently over-confident, in the realizable, under-parametrized setting.
Perhaps surprisingly, we also show that over-confidence is not always the case.
arXiv Detail & Related papers (2021-02-15T21:38:09Z) - Robustness to Spurious Correlations in Text Classification via
Automatically Generated Counterfactuals [8.827892752465958]
We propose to train a robust text classifier by augmenting the training data with automatically generated counterfactual data.
We show that the robust classifier makes meaningful and trustworthy predictions by emphasizing causal features and de-emphasizing non-causal features.
arXiv Detail & Related papers (2020-12-18T03:57:32Z) - Category-Learning with Context-Augmented Autoencoder [63.05016513788047]
Finding an interpretable non-redundant representation of real-world data is one of the key problems in Machine Learning.
We propose a novel method of using data augmentations when training autoencoders.
We train a Variational Autoencoder in such a way, that it makes transformation outcome predictable by auxiliary network.
arXiv Detail & Related papers (2020-10-10T14:04:44Z) - FIND: Human-in-the-Loop Debugging Deep Text Classifiers [55.135620983922564]
We propose FIND -- a framework which enables humans to debug deep learning text classifiers by disabling irrelevant hidden features.
Experiments show that by using FIND, humans can improve CNN text classifiers which were trained under different types of imperfect datasets.
arXiv Detail & Related papers (2020-10-10T12:52:53Z) - Initial Classifier Weights Replay for Memoryless Class Incremental
Learning [11.230170401360633]
Incremental Learning (IL) is useful when artificial systems need to deal with streams of data and do not have access to all data at all times.
We propose a different approach based on a vanilla fine tuning backbone.
We conduct a thorough evaluation with four public datasets in a memoryless incremental learning setting.
arXiv Detail & Related papers (2020-08-31T16:18:12Z) - Solving Long-tailed Recognition with Deep Realistic Taxonomic Classifier [68.38233199030908]
Long-tail recognition tackles the natural non-uniformly distributed data in realworld scenarios.
While moderns perform well on populated classes, its performance degrades significantly on tail classes.
Deep-RTC is proposed as a new solution to the long-tail problem, combining realism with hierarchical predictions.
arXiv Detail & Related papers (2020-07-20T05:57:42Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
We develop a methodology to compute precisely the full distribution of test errors among interpolating classifiers.
We find that test errors tend to concentrate around a small typical value $varepsilon*$, which deviates substantially from the test error of worst-case interpolating model.
Our results show that the usual style of analysis in statistical learning theory may not be fine-grained enough to capture the good generalization performance observed in practice.
arXiv Detail & Related papers (2020-06-22T21:12:31Z) - Dynamic Decision Boundary for One-class Classifiers applied to
non-uniformly Sampled Data [0.9569316316728905]
A typical issue in Pattern Recognition is the non-uniformly sampled data.
In this paper, we propose a one-class classifier based on the minimum spanning tree with a dynamic decision boundary.
arXiv Detail & Related papers (2020-04-05T18:29:36Z) - When are Non-Parametric Methods Robust? [30.56004276586835]
We study general non-parametric methods, with a view towards understanding when they are robust to these modifications.
We establish general conditions under which non-parametric methods are r-consistent.
arXiv Detail & Related papers (2020-03-13T05:23:53Z) - A Bayes-Optimal View on Adversarial Examples [9.51828574518325]
We argue for examining adversarial examples from the perspective of Bayes-optimal classification.
Our results show that even when these "gold standard" optimal classifiers are robust, CNNs trained on the same datasets consistently learn a vulnerable classifier.
arXiv Detail & Related papers (2020-02-20T16:43:47Z) - Identifying and Compensating for Feature Deviation in Imbalanced Deep
Learning [59.65752299209042]
We investigate learning a ConvNet under such a scenario.
We found that a ConvNet significantly over-fits the minor classes.
We propose to incorporate class-dependent temperatures (CDT) training ConvNet.
arXiv Detail & Related papers (2020-01-06T03:52:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.