論文の概要: Scaling Neuroscience Research using Federated Learning
- arxiv url: http://arxiv.org/abs/2102.08440v1
- Date: Tue, 16 Feb 2021 20:30:04 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-18 14:29:51.003056
- Title: Scaling Neuroscience Research using Federated Learning
- Title(参考訳): フェデレートラーニングを用いた神経科学研究のスケーリング
- Authors: Dimitris Stripelis, Jose Luis Ambite, Pradeep Lam and Paul Thompson
- Abstract要約: 単一の場所にデータをコピーする必要がある機械学習アプローチは、データ共有の課題によって妨げられる。
Federated Learningは、データサイロ上で共同モデルを学ぶための有望なアプローチです。
このアーキテクチャは対象データをサイト間で共有せず、集約されたパラメータのみであり、しばしば暗号化された環境で共有する。
- 参考スコア(独自算出の注目度): 1.2234742322758416
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The amount of biomedical data continues to grow rapidly. However, the ability
to analyze these data is limited due to privacy and regulatory concerns.
Machine learning approaches that require data to be copied to a single location
are hampered by the challenges of data sharing. Federated Learning is a
promising approach to learn a joint model over data silos. This architecture
does not share any subject data across sites, only aggregated parameters, often
in encrypted environments, thus satisfying privacy and regulatory requirements.
Here, we describe our Federated Learning architecture and training policies. We
demonstrate our approach on a brain age prediction model on structural MRI
scans distributed across multiple sites with diverse amounts of data and
subject (age) distributions. In these heterogeneous environments, our
Semi-Synchronous protocol provides faster convergence.
- Abstract(参考訳): バイオメディカルデータの量は急速に増え続けている。
しかし、プライバシーや規制上の懸念から、これらのデータを分析できる能力は限られている。
単一の場所にデータをコピーする必要がある機械学習アプローチは、データ共有の課題によって妨げられる。
Federated Learningは、データサイロ上で共同モデルを学ぶための有望なアプローチです。
このアーキテクチャは、暗号化された環境で、集約されたパラメータのみ、サイト全体で主題データを共有せず、プライバシーと規制要件を満たします。
ここでは、フェデレーション学習アーキテクチャとトレーニングポリシについて説明する。
多様なデータと対象(年齢)分布を持つ複数の部位に分布する構造的MRIスキャンの脳年齢予測モデルに対するアプローチを実証する。
これらの異種環境において、Semi-Synchronousプロトコルはより高速な収束を提供する。
関連論文リスト
- EPIC: Enhancing Privacy through Iterative Collaboration [4.199844472131922]
従来の機械学習技術は、中央集権的なデータ収集と処理を必要とする。
医療データを集中ストレージにプールする場合、プライバシ、オーナシップ、厳格な規制の問題が存在する。
フェデレートラーニング(FL)アプローチは、中央アグリゲータサーバと共有グローバルモデルを設定することで、そのような問題を克服する。
論文 参考訳(メタデータ) (2024-11-07T20:10:34Z) - An advanced data fabric architecture leveraging homomorphic encryption
and federated learning [10.779491433438144]
本稿では,分散データファブリックアーキテクチャにおけるフェデレーション学習と部分同型暗号を用いた医用画像解析のためのセキュアなアプローチを提案する。
本研究は下垂体腫瘍分類のケーススタディを通じて, 本手法の有効性を実証し, 高い精度を達成した。
論文 参考訳(メタデータ) (2024-02-15T08:50:36Z) - Factor-Assisted Federated Learning for Personalized Optimization with
Heterogeneous Data [6.024145412139383]
フェデレートラーニング(Federated Learning)は、データプライバシ保護を目的とした、新興の分散機械学習フレームワークである。
異なるクライアントのデータには、共通の知識とパーソナライズされた知識の両方が含まれている。
我々は、FedSplitと呼ばれる異種データのための、新しい個人化されたフェデレーション学習フレームワークを開発した。
論文 参考訳(メタデータ) (2023-12-07T13:05:47Z) - Source-Free Collaborative Domain Adaptation via Multi-Perspective
Feature Enrichment for Functional MRI Analysis [55.03872260158717]
安静時MRI機能(rs-fMRI)は、神経疾患の分析を助けるために多地点で研究されている。
ソース領域とターゲット領域の間のfMRIの不均一性を低減するための多くの手法が提案されている。
しかし、マルチサイト研究における懸念やデータストレージの負担のため、ソースデータの取得は困難である。
我々は、fMRI解析のためのソースフリー協調ドメイン適応フレームワークを設計し、事前訓練されたソースモデルとラベルなしターゲットデータのみにアクセスできるようにする。
論文 参考訳(メタデータ) (2023-08-24T01:30:18Z) - Tackling Computational Heterogeneity in FL: A Few Theoretical Insights [68.8204255655161]
我々は、計算異種データの形式化と処理を可能にする新しい集約フレームワークを導入し、分析する。
提案するアグリゲーションアルゴリズムは理論的および実験的予測から広範囲に解析される。
論文 参考訳(メタデータ) (2023-07-12T16:28:21Z) - FedILC: Weighted Geometric Mean and Invariant Gradient Covariance for
Federated Learning on Non-IID Data [69.0785021613868]
フェデレートラーニング(Federated Learning)とは、ローカルに計算されたパラメータの更新を、空間的に分散されたクライアントサイロからトレーニングデータに集約することで、共有サーバモデルによる学習を可能にする分散機械学習アプローチである。
本研究では, 勾配の共分散とヘッセンの幾何学的平均を利用して, シロ間およびシロ内成分の両方を捕捉するフェデレート不変学習一貫性(FedILC)アプローチを提案する。
これは医療、コンピュータビジョン、IoT(Internet of Things)といった様々な分野に関係している。
論文 参考訳(メタデータ) (2022-05-19T03:32:03Z) - Secure & Private Federated Neuroimaging [17.946206585229675]
Federated Learningは、データを共有することなく、複数のデータソース上でニューラルネットワークモデルの分散トレーニングを可能にする。
各サイトは、ニューラルネットワークをプライベートデータ上でしばらくトレーニングし、ニューラルネットワークパラメータをフェデレーションコントローラと共有する。
当社のフェデレートラーニングアーキテクチャであるMetisFLは、強力なセキュリティとプライバシを提供します。
論文 参考訳(メタデータ) (2022-05-11T03:36:04Z) - Practical Challenges in Differentially-Private Federated Survival
Analysis of Medical Data [57.19441629270029]
本稿では,ニューラルネットワークの本質的特性を活用し,生存分析モデルの訓練過程を関連づける。
小さな医療データセットと少数のデータセンターの現実的な設定では、このノイズはモデルを収束させるのが難しくなります。
DPFed-post は,私的フェデレート学習方式に後処理の段階を追加する。
論文 参考訳(メタデータ) (2022-02-08T10:03:24Z) - Rethinking Architecture Design for Tackling Data Heterogeneity in
Federated Learning [53.73083199055093]
注意に基づくアーキテクチャ(例えばTransformers)は、分散シフトに対してかなり堅牢であることを示す。
我々の実験は、畳み込みネットワークをトランスフォーマーに置き換えることによって、過去のデバイスを壊滅的に忘れることを大幅に減らせることを示した。
論文 参考訳(メタデータ) (2021-06-10T21:04:18Z) - GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially
Private Generators [74.16405337436213]
我々は、GS-WGAN(Gradient-sanitized Wasserstein Generative Adrial Networks)を提案する。
GS-WGANは、厳格なプライバシー保証を備えた機密データの衛生的な形式での公開を可能にする。
このアプローチは、複数のメトリクスにわたる最先端のアプローチよりも一貫して優れています。
論文 参考訳(メタデータ) (2020-06-15T10:01:01Z) - Multi-site fMRI Analysis Using Privacy-preserving Federated Learning and
Domain Adaptation: ABIDE Results [13.615292855384729]
高品質なディープラーニングモデルを訓練するには,大量の患者情報を集める必要がある。
患者データのプライバシを保護する必要があるため、複数の機関から中央データベースを組み立てることは困難である。
フェデレート・ラーニング(Federated Learning)は、エンティティのデータを集中化せずに、人口レベルのモデルをトレーニングすることを可能にする。
論文 参考訳(メタデータ) (2020-01-16T04:49:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。