Why Machine Learning Models Fail to Fully Capture Epistemic Uncertainty
- URL: http://arxiv.org/abs/2505.23506v1
- Date: Thu, 29 May 2025 14:50:46 GMT
- Title: Why Machine Learning Models Fail to Fully Capture Epistemic Uncertainty
- Authors: Sebastián Jiménez, Mira Jürgens, Willem Waegeman,
- Abstract summary: We make use of a more fine-grained taxonomy of epistemic uncertainty sources in machine learning models.<n>We show that high model bias can lead to misleadingly low estimates of epistemic uncertainty.<n>Common second-order uncertainty methods systematically blur bias-induced errors into aleatoric estimates.
- Score: 1.6112718683989882
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years various supervised learning methods that disentangle aleatoric and epistemic uncertainty based on second-order distributions have been proposed. We argue that these methods fail to capture critical components of epistemic uncertainty, particularly due to the often-neglected component of model bias. To show this, we make use of a more fine-grained taxonomy of epistemic uncertainty sources in machine learning models, and analyse how the classical bias-variance decomposition of the expected prediction error can be decomposed into different parts reflecting these uncertainties. By using a simulation-based evaluation protocol which encompasses epistemic uncertainty due to both procedural- and data-driven uncertainty components, we illustrate that current methods rarely capture the full spectrum of epistemic uncertainty. Through theoretical insights and synthetic experiments, we show that high model bias can lead to misleadingly low estimates of epistemic uncertainty, and common second-order uncertainty quantification methods systematically blur bias-induced errors into aleatoric estimates, thereby underrepresenting epistemic uncertainty. Our findings underscore that meaningful aleatoric estimates are feasible only if all relevant sources of epistemic uncertainty are properly represented.
Related papers
- Do you understand epistemic uncertainty? Think again! Rigorous frequentist epistemic uncertainty estimation in regression [37.422257886583424]
We train models to generate conditional predictions by feeding their initial output back as an additional input.<n>This method allows for a rigorous measurement of model uncertainty by observing how prediction responses change when conditioned on the model's previous answer.
arXiv Detail & Related papers (2025-03-17T15:54:57Z) - Probabilistic Modeling of Disparity Uncertainty for Robust and Efficient Stereo Matching [61.73532883992135]
We propose a new uncertainty-aware stereo matching framework.<n>We adopt Bayes risk as the measurement of uncertainty and use it to separately estimate data and model uncertainty.
arXiv Detail & Related papers (2024-12-24T23:28:20Z) - How disentangled are your classification uncertainties? [6.144680854063938]
Uncertainty Quantification in Machine Learning has progressed to predicting the source of uncertainty in a prediction.
This work proposes a set of experiments to evaluate disentanglement of aleatoric and epistemic uncertainty.
arXiv Detail & Related papers (2024-08-22T07:42:43Z) - Is Epistemic Uncertainty Faithfully Represented by Evidential Deep Learning Methods? [26.344949402398917]
This paper presents novel theoretical insights of evidential deep learning.
It highlights the difficulties in optimizing second-order loss functions.
It provides novel insights into issues of identifiability and convergence in second-order loss minimization.
arXiv Detail & Related papers (2024-02-14T10:07:05Z) - One step closer to unbiased aleatoric uncertainty estimation [71.55174353766289]
We propose a new estimation method by actively de-noising the observed data.
By conducting a broad range of experiments, we demonstrate that our proposed approach provides a much closer approximation to the actual data uncertainty than the standard method.
arXiv Detail & Related papers (2023-12-16T14:59:11Z) - Dense Uncertainty Estimation via an Ensemble-based Conditional Latent
Variable Model [68.34559610536614]
We argue that the aleatoric uncertainty is an inherent attribute of the data and can only be correctly estimated with an unbiased oracle model.
We propose a new sampling and selection strategy at train time to approximate the oracle model for aleatoric uncertainty estimation.
Our results show that our solution achieves both accurate deterministic results and reliable uncertainty estimation.
arXiv Detail & Related papers (2021-11-22T08:54:10Z) - Identifying Incorrect Classifications with Balanced Uncertainty [21.130311978327196]
Uncertainty estimation is critical for cost-sensitive deep-learning applications.
We propose the distributional imbalance to model the imbalance in uncertainty estimation as two kinds of distribution biases.
We then propose Balanced True Class Probability framework, which learns an uncertainty estimator with a novel Distributional Focal Loss objective.
arXiv Detail & Related papers (2021-10-15T11:52:31Z) - DEUP: Direct Epistemic Uncertainty Prediction [56.087230230128185]
Epistemic uncertainty is part of out-of-sample prediction error due to the lack of knowledge of the learner.
We propose a principled approach for directly estimating epistemic uncertainty by learning to predict generalization error and subtracting an estimate of aleatoric uncertainty.
arXiv Detail & Related papers (2021-02-16T23:50:35Z) - The Hidden Uncertainty in a Neural Networks Activations [105.4223982696279]
The distribution of a neural network's latent representations has been successfully used to detect out-of-distribution (OOD) data.
This work investigates whether this distribution correlates with a model's epistemic uncertainty, thus indicating its ability to generalise to novel inputs.
arXiv Detail & Related papers (2020-12-05T17:30:35Z) - Learning to Predict Error for MRI Reconstruction [67.76632988696943]
We demonstrate that predictive uncertainty estimated by the current methods does not highly correlate with prediction error.
We propose a novel method that estimates the target labels and magnitude of the prediction error in two steps.
arXiv Detail & Related papers (2020-02-13T15:55:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.