On Information-Theoretic Measures of Predictive Uncertainty
- URL: http://arxiv.org/abs/2410.10786v1
- Date: Mon, 14 Oct 2024 17:52:18 GMT
- Title: On Information-Theoretic Measures of Predictive Uncertainty
- Authors: Kajetan Schweighofer, Lukas Aichberger, Mykyta Ielanskyi, Sepp Hochreiter,
- Abstract summary: Despite its significance, a consensus on the correct measurement of predictive uncertainty remains elusive.
Our proposed framework categorizes predictive uncertainty measures according to two factors: (I) The predicting model (II) The approximation of the true predictive distribution.
We empirically evaluate these measures in typical uncertainty estimation settings, such as misclassification detection, selective prediction, and out-of-distribution detection.
- Score: 5.8034373350518775
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reliable estimation of predictive uncertainty is crucial for machine learning applications, particularly in high-stakes scenarios where hedging against risks is essential. Despite its significance, a consensus on the correct measurement of predictive uncertainty remains elusive. In this work, we return to first principles to develop a fundamental framework of information-theoretic predictive uncertainty measures. Our proposed framework categorizes predictive uncertainty measures according to two factors: (I) The predicting model (II) The approximation of the true predictive distribution. Examining all possible combinations of these two factors, we derive a set of predictive uncertainty measures that includes both known and newly introduced ones. We empirically evaluate these measures in typical uncertainty estimation settings, such as misclassification detection, selective prediction, and out-of-distribution detection. The results show that no single measure is universal, but the effectiveness depends on the specific setting. Thus, our work provides clarity about the suitability of predictive uncertainty measures by clarifying their implicit assumptions and relationships.
Related papers
- Second-Order Uncertainty Quantification: Variance-Based Measures [2.3999111269325266]
This paper proposes a novel way to use variance-based measures to quantify uncertainty on the basis of second-order distributions in classification problems.
A distinctive feature of the measures is the ability to reason about uncertainties on a class-based level, which is useful in situations where nuanced decision-making is required.
arXiv Detail & Related papers (2023-12-30T16:30:52Z) - Second-Order Uncertainty Quantification: A Distance-Based Approach [11.539320505465149]
We propose a set of formal criteria that meaningful uncertainty measures for predictive uncertainty based on second-order distributions should obey.
We provide a general framework for developing uncertainty measures to account for these criteria, and offer an instantiation based on the Wasserstein distance.
arXiv Detail & Related papers (2023-12-02T01:21:41Z) - Introducing an Improved Information-Theoretic Measure of Predictive
Uncertainty [6.3398383724486544]
Predictive uncertainty is commonly measured by the entropy of the Bayesian model average (BMA) predictive distribution.
We introduce a theoretically grounded measure to overcome these limitations.
We find that our introduced measure behaves more reasonably in controlled synthetic tasks.
arXiv Detail & Related papers (2023-11-14T16:55:12Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
We propose a post-hoc sampling strategy for estimating predictive uncertainty accounting for data ambiguity.
The method can generate different plausible outputs for a given input and does not assume parametric forms of predictive distributions.
arXiv Detail & Related papers (2023-08-03T12:43:21Z) - Gradient-based Uncertainty Attribution for Explainable Bayesian Deep
Learning [38.34033824352067]
Predictions made by deep learning models are prone to data perturbations, adversarial attacks, and out-of-distribution inputs.
We propose to develop explainable and actionable Bayesian deep learning methods to perform accurate uncertainty quantification.
arXiv Detail & Related papers (2023-04-10T19:14:15Z) - Dense Uncertainty Estimation via an Ensemble-based Conditional Latent
Variable Model [68.34559610536614]
We argue that the aleatoric uncertainty is an inherent attribute of the data and can only be correctly estimated with an unbiased oracle model.
We propose a new sampling and selection strategy at train time to approximate the oracle model for aleatoric uncertainty estimation.
Our results show that our solution achieves both accurate deterministic results and reliable uncertainty estimation.
arXiv Detail & Related papers (2021-11-22T08:54:10Z) - Dense Uncertainty Estimation [62.23555922631451]
In this paper, we investigate neural networks and uncertainty estimation techniques to achieve both accurate deterministic prediction and reliable uncertainty estimation.
We work on two types of uncertainty estimations solutions, namely ensemble based methods and generative model based methods, and explain their pros and cons while using them in fully/semi/weakly-supervised framework.
arXiv Detail & Related papers (2021-10-13T01:23:48Z) - DEUP: Direct Epistemic Uncertainty Prediction [56.087230230128185]
Epistemic uncertainty is part of out-of-sample prediction error due to the lack of knowledge of the learner.
We propose a principled approach for directly estimating epistemic uncertainty by learning to predict generalization error and subtracting an estimate of aleatoric uncertainty.
arXiv Detail & Related papers (2021-02-16T23:50:35Z) - The Aleatoric Uncertainty Estimation Using a Separate Formulation with
Virtual Residuals [51.71066839337174]
Existing methods can quantify the error in the target estimation, but they tend to underestimate it.
We propose a new separable formulation for the estimation of a signal and of its uncertainty, avoiding the effect of overfitting.
We demonstrate that the proposed method outperforms a state-of-the-art technique for signal and uncertainty estimation.
arXiv Detail & Related papers (2020-11-03T12:11:27Z) - Learning to Predict Error for MRI Reconstruction [67.76632988696943]
We demonstrate that predictive uncertainty estimated by the current methods does not highly correlate with prediction error.
We propose a novel method that estimates the target labels and magnitude of the prediction error in two steps.
arXiv Detail & Related papers (2020-02-13T15:55:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.