論文の概要: Symmetry Breaking for k-Robust Multi-Agent Path Finding
- arxiv url: http://arxiv.org/abs/2102.08689v1
- Date: Wed, 17 Feb 2021 11:09:33 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-18 14:37:29.872062
- Title: Symmetry Breaking for k-Robust Multi-Agent Path Finding
- Title(参考訳): k-Robustマルチエージェントパス探索のための対称性破壊
- Authors: Zhe Chen, Daniel Harabor, Jiaoyang Li, Peter J. Stuckey
- Abstract要約: k-Robust Conflict-BasedSearch (k-CBS)は、最大k遅延のロバストな座標と衝突のない計画を生成するアルゴリズムです。
そこで我々は,k-robust計画に特有な様々な対称性の破れ制約を導入し,矛盾するエージェントのペアに対して,効率よく相反する最適経路を見つける。
- 参考スコア(独自算出の注目度): 30.645303869311366
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: During Multi-Agent Path Finding (MAPF) problems, agents can be delayed by
unexpected events. To address such situations recent work describes k-Robust
Conflict-BasedSearch (k-CBS): an algorithm that produces coordinated and
collision-free plan that is robust for up to k delays. In this work we
introducing a variety of pairwise symmetry breaking constraints, specific to
k-robust planning, that can efficiently find compatible and optimal paths for
pairs of conflicting agents. We give a thorough description of the new
constraints and report large improvements to success rate ina range of domains
including: (i) classic MAPF benchmarks;(ii) automated warehouse domains and;
(iii) on maps from the 2019 Flatland Challenge, a recently introduced railway
domain where k-robust planning can be fruitfully applied to schedule trains.
- Abstract(参考訳): マルチエージェントパス探索(mapf)問題の間、エージェントは予期しないイベントによって遅延する可能性がある。
このような状況に対処するために、最近の研究ではk-robust conflict-basedsearch (k-cbs):最大k遅延に対して頑健な、協調的で衝突のない計画を生成するアルゴリズムである。
本研究では,k-ロバスト計画に特有な様々な対称性の破れ制約を導入し,矛盾するエージェントのペアに対して,効率よく相反する最適な経路を見つける。
新しい制約を徹底的に説明し、(i)古典的なMAPFベンチマーク、(ii)自動化倉庫ドメイン、(iii)k-robust計画をスケジュール列車にフルに適用できる最近導入された鉄道ドメインである2019 Flatland Challengeのマップなど、さまざまなドメインで成功率の大幅な改善を報告します。
関連論文リスト
- Optimal and Bounded Suboptimal Any-Angle Multi-agent Pathfinding [13.296796764344169]
提案手法は,最初の最適非角度マルチエージェントパスフィンディングアルゴリズムである。
我々のプランナーは、Continuous Conflict-based Search (CCBS)アルゴリズムと、Safe Interval Path Planning (TO-AA-SIPP)の最適な任意の角度変種に基づいている。
古典的MAPFから任意の角度設定、すなわち Disjoint Splitting と Multi-Constraint への2つの手法を適用する。
論文 参考訳(メタデータ) (2024-04-25T07:41:47Z) - Optimal Task Assignment and Path Planning using Conflict-Based Search with Precedence and Temporal Constraints [5.265273282482319]
本稿では,TAPF-PTC問題におけるタスク割り当てと経路探索について検討する。
我々は、競合ベースの検索(CBS)を拡張して、優先度と時間的制約に従うタスク割り当てと衝突のない経路を同時に生成する。
実験により,我々のアルゴリズムであるCBS-TA-PTCは,優先度と時間的制約を効果的に解決できることを示した。
論文 参考訳(メタデータ) (2024-02-13T20:07:58Z) - Scalable Mechanism Design for Multi-Agent Path Finding [87.40027406028425]
MAPF (Multi-Agent Path Finding) は、複数のエージェントが同時に移動し、与えられた目標地点に向かって共有領域を通って衝突しない経路を決定する。
最適解を見つけることは、しばしば計算不可能であり、近似的な準最適アルゴリズムを用いることが不可欠である。
本稿では、MAPFのスケーラブルな機構設計の問題を紹介し、MAPFアルゴリズムを近似した3つの戦略防御機構を提案する。
論文 参考訳(メタデータ) (2024-01-30T14:26:04Z) - MultiZenoTravel: a Tunable Benchmark for Multi-Objective Planning with
Known Pareto Front [71.19090689055054]
多目的AI計画では、既知のPareto Frontsを示すベンチマークが不足している。
提案するベンチマーク生成器と専用ソルバは、結果のインスタンスの真のParetoを確実に計算する。
本稿では,制約された問題に対して最適な計画を示すとともに,制約された問題に対する一般的な問題を減らす方法を示す。
論文 参考訳(メタデータ) (2023-04-28T07:09:23Z) - Robust Multi-Agent Pickup and Delivery with Delays [5.287544737925232]
MAPD(Multi-Agent Pickup and Delivery)は、エージェント群に対する衝突のない経路の計算の問題である。
MAPDの現在のアルゴリズムは、実際のアプリケーションで遭遇する現実的な問題の多くを考慮していない。
本稿では,不完全な実行の影響を抑える計画経路によって堅牢性を保証する2つの手法を提案する。
論文 参考訳(メタデータ) (2023-03-30T14:42:41Z) - Optimal Multi-Agent Path Finding for Precedence Constrained Planning
Tasks [0.7742297876120561]
我々は,PC-MAPF (Precedence Constrained Multi-Agent Path Finding) 問題の拡張について検討する。
そこで我々は,PC-CBS (Precedence Constrained Conflict Based Search) という新しいアルゴリズムを提案する。
本アルゴリズムは, 各種倉庫集合体, マルチエージェントピックアップ, 配送タスクに対して性能をベンチマークし, 最近提案された効率的なベースラインのサブ最適性を評価する。
論文 参考訳(メタデータ) (2022-02-08T07:26:45Z) - CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent
Path Planning in Continuous Spaces [20.389416558418382]
協調時間ロードマップ(CTRM)と呼ばれる新しいロードマップの概念を提案する。
CTRMは、エージェント同士の衝突を避けるために、他のエージェントの振る舞いを考慮する方法で、潜在的な溶液経路の周りの重要な位置に集中することができる。
我々は、関連する問題事例と妥当なソリューションのコレクションから生成モデルを学習する機械学習アプローチを開発した。
論文 参考訳(メタデータ) (2022-01-24T05:43:59Z) - Distributed stochastic optimization with large delays [59.95552973784946]
大規模最適化問題を解決する最も広く使われている手法の1つは、分散非同期勾配勾配(DASGD)である。
DASGDは同じ遅延仮定の下で大域的最適実装モデルに収束することを示す。
論文 参考訳(メタデータ) (2021-07-06T21:59:49Z) - Two-Stage Stochastic Optimization via Primal-Dual Decomposition and Deep
Unrolling [86.85697555068168]
2段階のアルゴリズム最適化は、様々な工学や科学的応用において重要な役割を果たす。
特に長期変数と短期変数が制約の中で結合されている場合、アルゴリズムは効率的ではない。
PDD-SSCAが既存のソリューションよりも優れたパフォーマンスを達成できることを示します。
論文 参考訳(メタデータ) (2021-05-05T03:36:00Z) - A Feedback Scheme to Reorder a Multi-Agent Execution Schedule by
Persistently Optimizing a Switchable Action Dependency Graph [65.70656676650391]
複数の自動誘導車両 (AGV) が共通作業空間をナビゲートし, 様々な作業を行う。
一つのアプローチは、Action Dependency Graph (ADG)を構築し、そのルートに沿って進むとAGVの順序を符号化する。
ワークスペースが人間やサードパーティロボットのような動的障害によって共有されている場合、AGVは大きな遅延を経験することができる。
本稿では,各AGVの経路完了時間を最小限に抑えるために,非循環ADGを繰り返し修正するオンライン手法を提案する。
論文 参考訳(メタデータ) (2020-10-11T14:39:50Z) - Dynamic Multi-Robot Task Allocation under Uncertainty and Temporal
Constraints [52.58352707495122]
本稿では,不確実性およびマルチエージェント協調の下での逐次意思決定における重要な計算課題を分離するマルチロボット割当アルゴリズムを提案する。
都市におけるマルチアームコンベヤベルトピック・アンド・プレイスとマルチドローン配送ディスパッチの2つの異なる領域における広範囲なシミュレーション結果について検証を行った。
論文 参考訳(メタデータ) (2020-05-27T01:10:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。