Geostatistical Learning: Challenges and Opportunities
- URL: http://arxiv.org/abs/2102.08791v1
- Date: Wed, 17 Feb 2021 14:33:15 GMT
- Title: Geostatistical Learning: Challenges and Opportunities
- Authors: J\'ulio Hoffimann, Maciel Zortea, Breno de Carvalho, Bianca Zadrozny
- Abstract summary: We introduce the geostatistical (transfer) learning problem, and illustrate the challenges of learning from geospatial data.
Experiments with synthetic Gaussian process data as well as with real data from geophysical surveys in New Zealand indicate that none of the methods are adequate for model selection in a geospatial context.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Statistical learning theory provides the foundation to applied machine
learning, and its various successful applications in computer vision, natural
language processing and other scientific domains. The theory, however, does not
take into account the unique challenges of performing statistical learning in
geospatial settings. For instance, it is well known that model errors cannot be
assumed to be independent and identically distributed in geospatial (a.k.a.
regionalized) variables due to spatial correlation; and trends caused by
geophysical processes lead to covariate shifts between the domain where the
model was trained and the domain where it will be applied, which in turn harm
the use of classical learning methodologies that rely on random samples of the
data. In this work, we introduce the geostatistical (transfer) learning
problem, and illustrate the challenges of learning from geospatial data by
assessing widely-used methods for estimating generalization error of learning
models, under covariate shift and spatial correlation. Experiments with
synthetic Gaussian process data as well as with real data from geophysical
surveys in New Zealand indicate that none of the methods are adequate for model
selection in a geospatial context. We provide general guidelines regarding the
choice of these methods in practice while new methods are being actively
researched.
Related papers
- You are out of context! [0.0]
New data can act as forces stretching, compressing, or twisting the geometric relationships learned by a model.
We propose a novel drift detection methodology for machine learning (ML) models based on the concept of ''deformation'' in the vector space representation of data.
arXiv Detail & Related papers (2024-11-04T10:17:43Z) - Causal Representation Learning in Temporal Data via Single-Parent Decoding [66.34294989334728]
Scientific research often seeks to understand the causal structure underlying high-level variables in a system.
Scientists typically collect low-level measurements, such as geographically distributed temperature readings.
We propose a differentiable method, Causal Discovery with Single-parent Decoding, that simultaneously learns the underlying latents and a causal graph over them.
arXiv Detail & Related papers (2024-10-09T15:57:50Z) - Learning Divergence Fields for Shift-Robust Graph Representations [73.11818515795761]
In this work, we propose a geometric diffusion model with learnable divergence fields for the challenging problem with interdependent data.
We derive a new learning objective through causal inference, which can guide the model to learn generalizable patterns of interdependence that are insensitive across domains.
arXiv Detail & Related papers (2024-06-07T14:29:21Z) - Embedding Trajectory for Out-of-Distribution Detection in Mathematical Reasoning [50.84938730450622]
We propose a trajectory-based method TV score, which uses trajectory volatility for OOD detection in mathematical reasoning.
Our method outperforms all traditional algorithms on GLMs under mathematical reasoning scenarios.
Our method can be extended to more applications with high-density features in output spaces, such as multiple-choice questions.
arXiv Detail & Related papers (2024-05-22T22:22:25Z) - An Ensemble Framework for Explainable Geospatial Machine Learning Models [16.010404125829876]
We introduce an integrated framework that merges local spatial weighting scheme, Explainable Artificial Intelligence (XAI) and cutting-edge machine learning technologies.
This framework is verified to enhance the interpretability and accuracy of predictions in both geographic regression and classification.
It significantly boosts prediction precision, offering a novel approach to understanding spatial phenomena.
arXiv Detail & Related papers (2024-03-05T21:12:10Z) - Neural networks for geospatial data [0.0]
NN-GLS is a new neural network estimation algorithm for the non-linear mean in GP models.
We show that NN-GLS admits a representation as a special type of graph neural network (GNN)
Theoretically, we show that NN-GLS will be consistent for irregularly observed spatially correlated data processes.
arXiv Detail & Related papers (2023-04-18T17:52:23Z) - Evaluation Challenges for Geospatial ML [5.576083740549639]
Geospatial machine learning models and maps are increasingly used for downstream analyses in science and policy.
The correct way to measure performance of spatial machine learning outputs has been a topic of debate.
This paper delineates unique challenges of model evaluation for geospatial machine learning with global or remotely sensed datasets.
arXiv Detail & Related papers (2023-03-31T14:24:06Z) - Towards Understanding and Mitigating Dimensional Collapse in Heterogeneous Federated Learning [112.69497636932955]
Federated learning aims to train models across different clients without the sharing of data for privacy considerations.
We study how data heterogeneity affects the representations of the globally aggregated models.
We propose sc FedDecorr, a novel method that can effectively mitigate dimensional collapse in federated learning.
arXiv Detail & Related papers (2022-10-01T09:04:17Z) - FedILC: Weighted Geometric Mean and Invariant Gradient Covariance for
Federated Learning on Non-IID Data [69.0785021613868]
Federated learning is a distributed machine learning approach which enables a shared server model to learn by aggregating the locally-computed parameter updates with the training data from spatially-distributed client silos.
We propose the Federated Invariant Learning Consistency (FedILC) approach, which leverages the gradient covariance and the geometric mean of Hessians to capture both inter-silo and intra-silo consistencies.
This is relevant to various fields such as medical healthcare, computer vision, and the Internet of Things (IoT)
arXiv Detail & Related papers (2022-05-19T03:32:03Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
We introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process.
Our method significantly reduces the required number of interactions compared with random intervention targeting.
We demonstrate superior performance on multiple benchmarks from simulated to real-world data.
arXiv Detail & Related papers (2021-09-06T13:10:37Z) - An Information-theoretic Approach to Distribution Shifts [9.475039534437332]
Safely deploying machine learning models to the real world is often a challenging process.
Models trained with data obtained from a specific geographic location tend to fail when queried with data obtained elsewhere.
neural networks that are fit to a subset of the population might carry some selection bias into their decision process.
arXiv Detail & Related papers (2021-06-07T16:44:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.