Heterogeneous transfer learning for high dimensional regression with feature mismatch
- URL: http://arxiv.org/abs/2412.18081v1
- Date: Tue, 24 Dec 2024 01:29:31 GMT
- Title: Heterogeneous transfer learning for high dimensional regression with feature mismatch
- Authors: Jae Ho Chang, Massimiliano Russo, Subhadeep Paul,
- Abstract summary: We consider the problem of transferring knowledge from a source, or proxy, domain to a new target domain for learning a high-dimensional regression model with possibly different features.
Most homogeneous transfer and multi-task learning methods assume that the target and proxy domains have the same feature space.
We propose a two-stage method that involves learning the relationship between the missing and observed features through a projection step in the proxy data.
- Score: 1.6385815610837167
- License:
- Abstract: We consider the problem of transferring knowledge from a source, or proxy, domain to a new target domain for learning a high-dimensional regression model with possibly different features. Recently, the statistical properties of homogeneous transfer learning have been investigated. However, most homogeneous transfer and multi-task learning methods assume that the target and proxy domains have the same feature space, limiting their practical applicability. In applications, target and proxy feature spaces are frequently inherently different, for example, due to the inability to measure some variables in the target data-poor environments. Conversely, existing heterogeneous transfer learning methods do not provide statistical error guarantees, limiting their utility for scientific discovery. We propose a two-stage method that involves learning the relationship between the missing and observed features through a projection step in the proxy data and then solving a joint penalized regression optimization problem in the target data. We develop an upper bound on the method's parameter estimation risk and prediction risk, assuming that the proxy and the target domain parameters are sparsely different. Our results elucidate how estimation and prediction error depend on the complexity of the model, sample size, the extent of overlap, and correlation between matched and mismatched features.
Related papers
- Model-Robust and Adaptive-Optimal Transfer Learning for Tackling Concept Shifts in Nonparametric Regression [7.243632426715939]
We present a transfer learning procedure that is robust against model misspecification while adaptively attaining optimality.
We derive the adaptive convergence rates of the excess risk for specifying Gaussian kernels in a prevalent class of hypothesis transfer learning algorithms.
arXiv Detail & Related papers (2025-01-18T20:33:37Z) - Resilient Peer-to-peer Learning based on Adaptive Aggregation [0.5530212768657544]
Collaborative learning in peer-to-peer networks offers the benefits of learning while mitigating single points of failure.
adversarial workers pose potential threats by attempting to inject malicious information into the network.
This paper introduces a resilient aggregation technique aimed at fostering similarity learning processes.
arXiv Detail & Related papers (2025-01-08T16:47:45Z) - Collaborative Heterogeneous Causal Inference Beyond Meta-analysis [68.4474531911361]
We propose a collaborative inverse propensity score estimator for causal inference with heterogeneous data.
Our method shows significant improvements over the methods based on meta-analysis when heterogeneity increases.
arXiv Detail & Related papers (2024-04-24T09:04:36Z) - Modeling Uncertain Feature Representation for Domain Generalization [49.129544670700525]
We show that our method consistently improves the network generalization ability on multiple vision tasks.
Our methods are simple yet effective and can be readily integrated into networks without additional trainable parameters or loss constraints.
arXiv Detail & Related papers (2023-01-16T14:25:02Z) - Estimation and inference for transfer learning with high-dimensional
quantile regression [3.4510296013600374]
We propose a transfer learning procedure in the framework of high-dimensional quantile regression models.
We establish error bounds of transfer learning estimator based on delicately selected transferable source domains.
By adopting data-splitting technique, we advocate a transferability detection approach that guarantees to circumvent negative transfer.
arXiv Detail & Related papers (2022-11-26T14:40:19Z) - Transfer Learning for Contextual Multi-armed Bandits [8.97013379960904]
We study the problem of transfer learning for non contextual multi-armed bandits under the coparametric shift model.
A novel transfer learning algorithm that attains the minimax regret is proposed.
A simulation study is carried out to illustrate the benefits of utilizing the data from the auxiliary source domains for learning in the target domain.
arXiv Detail & Related papers (2022-11-22T22:24:28Z) - Equivariance Allows Handling Multiple Nuisance Variables When Analyzing
Pooled Neuroimaging Datasets [53.34152466646884]
In this paper, we show how bringing recent results on equivariant representation learning instantiated on structured spaces together with simple use of classical results on causal inference provides an effective practical solution.
We demonstrate how our model allows dealing with more than one nuisance variable under some assumptions and can enable analysis of pooled scientific datasets in scenarios that would otherwise entail removing a large portion of the samples.
arXiv Detail & Related papers (2022-03-29T04:54:06Z) - Uncertainty Modeling for Out-of-Distribution Generalization [56.957731893992495]
We argue that the feature statistics can be properly manipulated to improve the generalization ability of deep learning models.
Common methods often consider the feature statistics as deterministic values measured from the learned features.
We improve the network generalization ability by modeling the uncertainty of domain shifts with synthesized feature statistics during training.
arXiv Detail & Related papers (2022-02-08T16:09:12Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
The distributionally robust optimization framework is considered for training a parametric model.
The objective is to endow the trained model with robustness against adversarially manipulated input data.
Proposed algorithms offer robustness with little overhead.
arXiv Detail & Related papers (2020-07-07T18:25:25Z) - Dropout Strikes Back: Improved Uncertainty Estimation via Diversity
Sampling [3.077929914199468]
We show that modifying the sampling distributions for dropout layers in neural networks improves the quality of uncertainty estimation.
Our main idea consists of two main steps: computing data-driven correlations between neurons and generating samples, which include maximally diverse neurons.
arXiv Detail & Related papers (2020-03-06T15:20:04Z) - Dynamic Federated Learning [57.14673504239551]
Federated learning has emerged as an umbrella term for centralized coordination strategies in multi-agent environments.
We consider a federated learning model where at every iteration, a random subset of available agents perform local updates based on their data.
Under a non-stationary random walk model on the true minimizer for the aggregate optimization problem, we establish that the performance of the architecture is determined by three factors, namely, the data variability at each agent, the model variability across all agents, and a tracking term that is inversely proportional to the learning rate of the algorithm.
arXiv Detail & Related papers (2020-02-20T15:00:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.