論文の概要: A multimodal dataset for understanding the impact of mobile phones on remote online virtual education
- arxiv url: http://arxiv.org/abs/2412.14195v2
- Date: Thu, 19 Jun 2025 15:11:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-23 14:57:51.190941
- Title: A multimodal dataset for understanding the impact of mobile phones on remote online virtual education
- Title(参考訳): 携帯電話が遠隔オンラインバーチャル教育に与える影響を理解するためのマルチモーダルデータセット
- Authors: Roberto Daza, Alvaro Becerra, Ruth Cobos, Julian Fierrez, Aythami Morales,
- Abstract要約: IMPROVEデータセットは、オンライン教育における携帯電話の利用が学習者に与える影響を評価するために設計されたマルチモーダルリソースである。
120人の学習者から収集された行動、生体、生理、および学術的パフォーマンスデータを含んでいる。
このデータセットは、GitHubとScience Data Bankを通じて研究するために公開されている。
- 参考スコア(独自算出の注目度): 13.616038134322435
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work presents the IMPROVE dataset, a multimodal resource designed to evaluate the effects of mobile phone usage on learners during online education. It includes behavioral, biometric, physiological, and academic performance data collected from 120 learners divided into three groups with different levels of phone interaction, enabling the analysis of the impact of mobile phone usage and related phenomena such as nomophobia. A setup involving 16 synchronized sensors -- including EEG, eye tracking, video cameras, smartwatches, and keystroke dynamics -- was used to monitor learner activity during 30-minute sessions involving educational videos, document reading, and multiple-choice tests. Mobile phone usage events, including both controlled interventions and uncontrolled interactions, were labeled by supervisors and refined through a semi-supervised re-labeling process. Technical validation confirmed signal quality, and statistical analyses revealed biometric changes associated with phone usage. The dataset is publicly available for research through GitHub and Science Data Bank, with synchronized recordings from three platforms (edBB, edX, and LOGGE), provided in standard formats (.csv, .mp4, .wav, and .tsv), and accompanied by a detailed guide.
- Abstract(参考訳): 本研究は,オンライン教育における携帯電話利用が学習者に与える影響を評価するためのマルチモーダル・リソースであるIMPROVEデータセットを提案する。
このデータには、120人の学習者から収集された行動、生体、生理、および学術的なパフォーマンスデータが含まれており、携帯電話の使用状況やノモフォビアのような関連する現象を分析できる。
EEG、アイトラッキング、ビデオカメラ、スマートウォッチ、キーストロークダイナミクスを含む16の同期センサーを備えたセットアップは、教育ビデオ、文書読取、複数選択テストを含む30分間のセッションで学習者の活動を監視するために使用された。
制御された介入と制御されていない相互作用の両方を含む携帯電話の使用イベントは、管理者によってラベル付けされ、半監督された再ラベルプロセスを通じて洗練された。
技術的検証により、信号品質が確認され、統計学的解析により、電話使用に伴う生体的変化が明らかになった。
データセットはGitHubとScience Data Bankを通じて公開されており、標準フォーマット(.csv、.mp4、.wav、.tsv)で提供される3つのプラットフォーム(edBB、edX、LOGGE)からの同期記録と詳細なガイドが付属している。
関連論文リスト
- CADDI: An in-Class Activity Detection Dataset using IMU data from low-cost sensors [3.3860149185538613]
安価なIMUセンサを用いたクラス内アクティビティ検出のための新しいデータセットを提案する。
データセットは、典型的な教室のシナリオで12人の参加者が実行した、瞬間的および連続的な19の多様なアクティビティで構成されている。
加速度計、ジャイロスコープ、回転ベクトルデータ、および同期ステレオ画像を含み、センサーと視覚データを用いたマルチモーダルアルゴリズムを開発するための包括的なリソースを提供する。
論文 参考訳(メタデータ) (2025-03-04T18:29:57Z) - Representation Learning for Wearable-Based Applications in the Case of
Missing Data [20.37256375888501]
実環境におけるマルチモーダルセンサデータは、データ品質が低く、データアノテーションが限られているため、依然として困難である。
本稿では,不足するウェアラブルデータに対する表現学習について検討し,最新統計手法と比較する。
本研究は,マスキングに基づく自己指導型学習タスクの設計と開発に関する知見を提供する。
論文 参考訳(メタデータ) (2024-01-08T08:21:37Z) - What Makes Pre-Trained Visual Representations Successful for Robust
Manipulation? [57.92924256181857]
照明やシーンテクスチャの微妙な変化の下では,操作や制御作業のために設計された視覚表現が必ずしも一般化されないことがわかった。
創発的セグメンテーション能力は,ViTモデルにおける分布外一般化の強い予測因子であることがわかった。
論文 参考訳(メタデータ) (2023-11-03T18:09:08Z) - Digital Fingerprinting of Microstructures [44.139970905896504]
微細な情報をフィンガープリントする効率的な方法を見つけることは、データ中心の機械学習アプローチを活用するための重要なステップである。
本稿では,マイクロ構造を分類し,その特徴を機械学習タスクに応用する。
特に、ImageNetデータセットで事前訓練された畳み込みニューラルネットワーク(CNN)によるトランスファーラーニングを利用するメソッドは、他の方法よりも優れていることが一般的に示されている。
論文 参考訳(メタデータ) (2022-03-25T15:40:44Z) - Mobile Behavioral Biometrics for Passive Authentication [65.94403066225384]
本研究は, 単モーダルおよび多モーダルな行動的生体特性の比較分析を行った。
HuMIdbは、最大かつ最も包括的なモバイルユーザインタラクションデータベースである。
我々の実験では、最も識別可能な背景センサーは磁力計であり、タッチタスクではキーストロークで最良の結果が得られる。
論文 参考訳(メタデータ) (2022-03-14T17:05:59Z) - Federated Learning: A Signal Processing Perspective [144.63726413692876]
フェデレーションラーニングは、データを明示的に交換することなく、ローカルデータセットを保持する複数のエッジデバイスでモデルをトレーニングするための新しい機械学習パラダイムです。
本稿では、信号処理ツールを用いて扱うのが自然である主な課題をカプセル化し、強調する、連合学習のための統一的な体系的フレームワークを提供する。
論文 参考訳(メタデータ) (2021-03-31T15:14:39Z) - EaZy Learning: An Adaptive Variant of Ensemble Learning for Fingerprint
Liveness Detection [14.99677459192122]
指紋の生存度検出機構は、データセット内環境では良好に機能するが、クロスセンサーおよびクロスデータセット設定下では不幸にも失敗する。
指紋スプーフ検出器の一般化能力、堅牢性、相互運用性を高めるために、学習モデルはデータに適応する必要がある。
本稿では,熱心学習と遅延学習の中間に適応できる汎用モデルであるEaZy学習を提案する。
論文 参考訳(メタデータ) (2021-03-03T06:40:19Z) - TapNet: The Design, Training, Implementation, and Applications of a
Multi-Task Learning CNN for Off-Screen Mobile Input [75.05709030478073]
本稿では,スマートフォンのタップを検出するマルチタスクネットワークであるTapNetの設計,トレーニング,実装,応用について述べる。
TapNetはデバイス間のデータから共同で学習し、タップ方向やタップ位置を含む複数のタップ特性を同時に認識することができる。
論文 参考訳(メタデータ) (2021-02-18T00:45:41Z) - CLRGaze: Contrastive Learning of Representations for Eye Movement
Signals [0.0]
眼球運動の特徴ベクトルを自己指導的に学習する。
我々は、対照的な学習アプローチを採用し、深層ニューラルネットワークが顕著な視線パターンと粒度のパターンを識別することを奨励する一連のデータ変換を提案する。
論文 参考訳(メタデータ) (2020-10-25T06:12:06Z) - Semantics-aware Adaptive Knowledge Distillation for Sensor-to-Vision
Action Recognition [131.6328804788164]
本稿では,視覚・センサ・モダリティ(動画)における行動認識を強化するためのフレームワーク,Semantics-Aware Adaptive Knowledge Distillation Networks (SAKDN)を提案する。
SAKDNは複数のウェアラブルセンサーを教師のモダリティとして使用し、RGB動画を学生のモダリティとして使用している。
論文 参考訳(メタデータ) (2020-09-01T03:38:31Z) - A Framework for Behavioral Biometric Authentication using Deep Metric
Learning on Mobile Devices [17.905483523678964]
バッテリー駆動のモバイルデバイス上でのトレーニングを取り入れた新しいフレームワークを提案する。これにより、プライベートデータはデバイスを離れることなく、実行時の動作パターンに柔軟に適応するようにトレーニングをスケジュールすることができる。
実験では、3つの公開データセットで95%以上の認証精度が示され、データが少ないマルチクラスの分類では15%の精度が向上し、それぞれ99%と90%が成功したブルートフォース攻撃とサイドチャネル攻撃に対する堅牢性が向上した。
その結果,トレーニングはビデオ視聴よりも低エネルギーを消費し,ゲームよりも若干高いエネルギーを消費していることがわかった。
論文 参考訳(メタデータ) (2020-05-26T17:56:20Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
ネットワークトレーニングにおいて,信頼度の高いサンプルを多量のラベルのないデータで活用するためのオムニ教師付き学習を提案する。
我々は,新しいデータセットが学習したFERモデルの能力を大幅に向上させることができることを実験的に検証した。
そこで本研究では,生成したデータセットを複数のクラスワイド画像に圧縮するために,データセット蒸留戦略を適用することを提案する。
論文 参考訳(メタデータ) (2020-05-18T09:36:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。