論文の概要: Data Poisoning Attacks and Defenses to Crowdsourcing Systems
- arxiv url: http://arxiv.org/abs/2102.09171v1
- Date: Thu, 18 Feb 2021 06:03:48 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-19 14:08:32.500622
- Title: Data Poisoning Attacks and Defenses to Crowdsourcing Systems
- Title(参考訳): クラウドソーシングシステムに対するデータ中毒攻撃と防御
- Authors: Minghong Fang, Minghao Sun, Qi Li, Neil Zhenqiang Gong, Jin Tian, Jia
Liu
- Abstract要約: クラウドソーシングはデータ中毒攻撃に対して脆弱であることを示す。
悪意のあるクライアントは、集約されたデータを壊すために注意深く作られたデータを提供します。
悪質なクライアントの影響を減らすため、2つの防御策を提案する。
- 参考スコア(独自算出の注目度): 26.147716118854614
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A key challenge of big data analytics is how to collect a large volume of
(labeled) data. Crowdsourcing aims to address this challenge via aggregating
and estimating high-quality data (e.g., sentiment label for text) from
pervasive clients/users. Existing studies on crowdsourcing focus on designing
new methods to improve the aggregated data quality from unreliable/noisy
clients. However, the security aspects of such crowdsourcing systems remain
under-explored to date. We aim to bridge this gap in this work. Specifically,
we show that crowdsourcing is vulnerable to data poisoning attacks, in which
malicious clients provide carefully crafted data to corrupt the aggregated
data. We formulate our proposed data poisoning attacks as an optimization
problem that maximizes the error of the aggregated data. Our evaluation results
on one synthetic and two real-world benchmark datasets demonstrate that the
proposed attacks can substantially increase the estimation errors of the
aggregated data. We also propose two defenses to reduce the impact of malicious
clients. Our empirical results show that the proposed defenses can
substantially reduce the estimation errors of the data poisoning attacks.
- Abstract(参考訳): ビッグデータ分析の重要な課題は、大量の(ラベル付き)データを収集する方法だ。
クラウドソーシングは、広汎なクライアント/ユーザから高品質なデータ(テキストの感情ラベルなど)を集約し、推定することで、この問題に対処しようとしている。
クラウドソーシングに関する既存の研究は、信頼できない、騒々しいクライアントから集約されたデータ品質を改善する新しい方法の設計に焦点を当てています。
しかし、そのようなクラウドソーシングシステムのセキュリティ面は、現在まで未調査のままです。
私たちはこの仕事のギャップを埋めることを目指している。
具体的には、クラウドソーシングがデータ中毒の攻撃に対して脆弱であることを示し、悪意のあるクライアントはデータを慎重に作成して集約したデータを破損させる。
提案するデータ中毒攻撃を,集約データの誤差を最大化する最適化問題として定式化する。
1つの合成および2つの実世界のベンチマークデータセットの評価結果は、提案された攻撃が集計データの推定誤差を大幅に増加させることができることを示しています。
また,悪意のあるクライアントの影響を減らすための2つの防御策を提案する。
実験の結果,提案手法はデータ中毒攻撃の推定誤差を大幅に低減できることがわかった。
関連論文リスト
- Client-side Gradient Inversion Against Federated Learning from Poisoning [59.74484221875662]
フェデレートラーニング(FL)により、分散参加者は、データを中央サーバに直接共有することなく、グローバルモデルをトレーニングできる。
近年の研究では、FLは元のトレーニングサンプルの再構築を目的とした勾配反転攻撃(GIA)に弱いことが判明している。
本稿では,クライアント側から起動可能な新たな攻撃手法であるクライアント側中毒性グレーディエント・インバージョン(CGI)を提案する。
論文 参考訳(メタデータ) (2023-09-14T03:48:27Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning(FL)は、分散機械学習モデルのトレーニング、データのプライバシの保護、通信コストの低減、多様化したデータソースによるモデルパフォーマンスの向上を支援する。
FLは、中毒攻撃、標的外のパフォーマンス劣化とターゲットのバックドア攻撃の両方でモデルの整合性を損なうような脆弱性に直面している。
我々は、複数の目的に同時に適応できる、強い適応的敵の概念を新たに定義する。
MESASは、実際のデータシナリオで有効であり、平均オーバーヘッドは24.37秒である。
論文 参考訳(メタデータ) (2023-06-06T11:44:42Z) - Towards Generalizable Data Protection With Transferable Unlearnable
Examples [50.628011208660645]
本稿では、転送不可能な例を生成することによって、新しい一般化可能なデータ保護手法を提案する。
私たちの知る限りでは、これはデータ分散の観点からデータのプライバシを調べる最初のソリューションです。
論文 参考訳(メタデータ) (2023-05-18T04:17:01Z) - Refiner: Data Refining against Gradient Leakage Attacks in Federated
Learning [28.76786159247595]
グラデーションリーク攻撃は クライアントのアップロードした勾配を利用して 機密データを再構築する
本稿では,従来の勾配摂動から分離した新しい防御パラダイムについて検討する。
プライバシ保護とパフォーマンス維持のための2つのメトリクスを共同で最適化するRefinerを設計する。
論文 参考訳(メタデータ) (2022-12-05T05:36:15Z) - Try to Avoid Attacks: A Federated Data Sanitization Defense for
Healthcare IoMT Systems [4.024567343465081]
IoMTの分布は、データ中毒攻撃から保護されるリスクがある。
処方されたデータは、医療データを偽造することによって製造することができる。
本稿では,フェデレーテッドデータ衛生防衛(Federated Data Sanitization Defense)について紹介する。
論文 参考訳(メタデータ) (2022-11-03T05:21:39Z) - Concealing Sensitive Samples against Gradient Leakage in Federated
Learning [41.43099791763444]
Federated Learning(FL)は、クライアントが生のプライベートデータをサーバと共有する必要をなくし、ユーザのプライバシを高める分散学習パラダイムである。
近年の研究では、FLの脆弱性が逆攻撃のモデルとなり、敵は共有勾配情報に基づく盗聴によって個人データを再構築している。
我々は,機密データの勾配を隠蔽標本で曖昧にする,シンプルで効果的な防衛戦略を提案する。
論文 参考訳(メタデータ) (2022-09-13T04:19:35Z) - Robust Trajectory Prediction against Adversarial Attacks [84.10405251683713]
ディープニューラルネットワーク(DNN)を用いた軌道予測は、自律運転システムにおいて不可欠な要素である。
これらの手法は敵の攻撃に対して脆弱であり、衝突などの重大な結果をもたらす。
本研究では,敵対的攻撃に対する軌道予測モデルを保護するための2つの重要な要素を同定する。
論文 参考訳(メタデータ) (2022-07-29T22:35:05Z) - Autoregressive Perturbations for Data Poisoning [54.205200221427994]
ソーシャルメディアからのデータスクレイピングは、不正なデータの使用に関する懸念が高まっている。
データ中毒攻撃は、スクラップ対策として提案されている。
より広範なデータセットにアクセスせずに有毒なデータを生成できる自動回帰(AR)中毒を導入する。
論文 参考訳(メタデータ) (2022-06-08T06:24:51Z) - Gradient-based Data Subversion Attack Against Binary Classifiers [9.414651358362391]
本研究では,攻撃者がラベルのラベルに毒を盛り,システムの機能を損なうようなラベル汚染攻撃に焦点を当てる。
我々は、予測ラベルに対する微分可能凸損失関数の勾配をウォームスタートとして利用し、汚染するデータインスタンスの集合を見つけるための異なる戦略を定式化する。
本実験は,提案手法がベースラインより優れ,計算効率が高いことを示す。
論文 参考訳(メタデータ) (2021-05-31T09:04:32Z) - Curse or Redemption? How Data Heterogeneity Affects the Robustness of
Federated Learning [51.15273664903583]
データの不均一性は、フェデレートラーニングにおける重要な特徴の1つとして認識されているが、しばしば敵対的攻撃に対する堅牢性のレンズで見過ごされる。
本稿では, 複合学習におけるバックドア攻撃の影響を, 総合的な実験を通じて評価し, 理解することを目的とした。
論文 参考訳(メタデータ) (2021-02-01T06:06:21Z) - Auto-weighted Robust Federated Learning with Corrupted Data Sources [7.475348174281237]
フェデレーション学習はコミュニケーション効率とプライバシ保護のトレーニングプロセスを提供する。
平均損失関数をナイーブに最小化する標準的なフェデレーション学習技術は、データの破損に弱い。
破損したデータソースに対して堅牢性を提供するために、自動重み付けロバストフェデレーテッドラーニング(arfl)を提案します。
論文 参考訳(メタデータ) (2021-01-14T21:54:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。