論文の概要: Hierarchical Learning Using Deep Optimum-Path Forest
- arxiv url: http://arxiv.org/abs/2102.09312v1
- Date: Thu, 18 Feb 2021 13:02:40 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-19 22:22:40.451381
- Title: Hierarchical Learning Using Deep Optimum-Path Forest
- Title(参考訳): 深層最適経路フォレストを用いた階層学習
- Authors: Luis C. S. Afonso, Clayton R. Pereira, Silke A. T. Weber, Christian
Hook, Alexandre X. Falc\~ao, Jo\~ao P. Papa
- Abstract要約: バグオブビジュアルワード(bovw)やディープラーニング技術は、コンピュータ支援医療診断を含むいくつかの領域で広く使われている。
本研究では機械学習とBoVWの概念を用いたパーキンソン病の自動同定ツールの開発に興味を持っている。
- 参考スコア(独自算出の注目度): 55.60116686945561
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bag-of-Visual Words (BoVW) and deep learning techniques have been widely used
in several domains, which include computer-assisted medical diagnoses. In this
work, we are interested in developing tools for the automatic identification of
Parkinson's disease using machine learning and the concept of BoVW. The
proposed approach concerns a hierarchical-based learning technique to design
visual dictionaries through the Deep Optimum-Path Forest classifier. The
proposed method was evaluated in six datasets derived from data collected from
individuals when performing handwriting exams. Experimental results showed the
potential of the technique, with robust achievements.
- Abstract(参考訳): バグオブビジュアルワード(bovw)やディープラーニング技術は、コンピュータ支援医療診断を含むいくつかの領域で広く使われている。
本研究では機械学習とBoVWの概念を用いたパーキンソン病の自動同定ツールの開発に興味を持っている。
提案手法は,深い最適パスフォレスト分類器を用いた視覚辞書設計のための階層型学習手法である。
本手法は筆跡検定の際に個人から収集したデータから得られた6つのデータセットで評価した。
実験結果は、この技術の可能性を、堅牢な成果で示しました。
関連論文リスト
- VisioPhysioENet: Multimodal Engagement Detection using Visual and Physiological Signals [12.238387391165071]
本稿では、視覚的手がかりと生理的信号を利用してエンゲージメントを検出する新しいシステムであるPhysioENetを紹介する。
DAiSEEデータセットの精度は63.09%である。
論文 参考訳(メタデータ) (2024-09-24T14:36:19Z) - An inclusive review on deep learning techniques and their scope in handwriting recognition [4.318047857743103]
ディープラーニングは、生の入力を中間機能層に結合する能力を持つ機械学習アルゴリズムのカテゴリを表現する。
ディープラーニングは、コンピュータビジョンとパターン認識において、多くの領域にわたる人間レベルのパフォーマンスの偉大な達成を特に見てきた。
本稿では,筆跡認識分野におけるディープラーニングの研究について述べる。
論文 参考訳(メタデータ) (2024-04-10T06:30:33Z) - Development and validation of a natural language processing algorithm to
pseudonymize documents in the context of a clinical data warehouse [53.797797404164946]
この研究は、この領域でツールやリソースを共有する際に直面する困難を浮き彫りにしている。
臨床文献のコーパスを12種類に分類した。
私たちは、ディープラーニングモデルと手動ルールの結果をマージして、ハイブリッドシステムを構築します。
論文 参考訳(メタデータ) (2023-03-23T17:17:46Z) - Semantic Search for Large Scale Clinical Ontologies [63.71950996116403]
本稿では,大規模臨床語彙検索システムを構築するための深層学習手法を提案する。
本稿では,意味学習データに基づくトレーニングデータを生成するTriplet-BERTモデルを提案する。
このモデルは,5つの実ベンチマークデータセットを用いて評価され,提案手法は自由テキストから概念,概念まで,概念語彙の検索において高い結果が得られることを示す。
論文 参考訳(メタデータ) (2022-01-01T05:15:42Z) - Human-in-the-Loop Disinformation Detection: Stance, Sentiment, or
Something Else? [93.91375268580806]
政治とパンデミックは、機械学習対応の偽ニュース検出アルゴリズムの開発に十分な動機を与えている。
既存の文献は、主に完全自動化されたケースに焦点を当てているが、その結果得られた技術は、軍事応用に必要な様々なトピック、ソース、時間スケールに関する偽情報を確実に検出することはできない。
既に利用可能なアナリストを人間のループとして活用することにより、感情分析、アスペクトベースの感情分析、姿勢検出といった標準的な機械学習技術は、部分的に自動化された偽情報検出システムに使用するためのもっとも有効な方法となる。
論文 参考訳(メタデータ) (2021-11-09T13:30:34Z) - Ten Quick Tips for Deep Learning in Biology [116.78436313026478]
機械学習は、データのパターンを認識し、予測モデリングに使用するアルゴリズムの開発と応用に関係している。
ディープラーニングは、独自の機械学習のサブフィールドになっている。
生物学的研究の文脈において、ディープラーニングは高次元の生物学的データから新しい洞察を導き出すためにますます使われてきた。
論文 参考訳(メタデータ) (2021-05-29T21:02:44Z) - TF-IDF vs Word Embeddings for Morbidity Identification in Clinical
Notes: An Initial Study [3.9424051088220518]
臨床記録のテキスト記述において, 深層学習と単語埋め込みを用いて, 16種類の致死型を同定する手法を提案する。
我々は、GloVeとWord2Vecというトレーニング済みのWord Embeddingsと、ターゲットドメインでトレーニングされたWord Embeddingsを採用しました。
論文 参考訳(メタデータ) (2021-05-20T09:57:45Z) - A Meta-embedding-based Ensemble Approach for ICD Coding Prediction [64.42386426730695]
国際疾病分類 (icd) は、世界中で臨床コーディングに使われているデファクトコードである。
これらのコードにより、医療提供者は償還を請求し、診断情報の効率的な保管と検索を容易にします。
提案手法は,日常的な医学データと科学論文の外部知識を用いて,効果的に単語ベクトルを訓練することにより,神経モデルの性能を高める。
論文 参考訳(メタデータ) (2021-02-26T17:49:58Z) - Improving Interpretability for Computer-aided Diagnosis tools on Whole
Slide Imaging with Multiple Instance Learning and Gradient-based Explanations [2.5461557112299773]
我々はWSI分類アーキテクチャの設計を形式化し、断片的解釈可能性アプローチを提案する。
本研究の目的は,タイルレベルスコアに基づいて決定を下す方法,タイルスコアがどう決定されるか,どの機能を用いてタスクに関連があるかを説明することである。
そこで本研究では,AUCにおけるタイルレベルの分類性能を29%以上向上させる,新しい解釈可能性スライドレベルの熱マップを提案する。
論文 参考訳(メタデータ) (2020-09-29T13:39:27Z) - PhenoTagger: A Hybrid Method for Phenotype Concept Recognition using
Human Phenotype Ontology [6.165755812152143]
PhenoTaggerは、辞書と機械学習に基づく手法を組み合わせて、構造化されていないテキストの概念を認識するハイブリッド手法である。
提案手法は2つのHPOコーパスを用いて検証し,PhenoTaggerが従来の手法と比較した。
論文 参考訳(メタデータ) (2020-09-17T18:00:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。