論文の概要: Regularized Recovery by Multi-order Partial Hypergraph Total Variation
- arxiv url: http://arxiv.org/abs/2102.09771v1
- Date: Fri, 19 Feb 2021 07:18:33 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-22 13:19:53.885763
- Title: Regularized Recovery by Multi-order Partial Hypergraph Total Variation
- Title(参考訳): 多段部分ハイパーグラフ全変量による正規化回復
- Authors: Ruyuan Qu, Jiaqi He, Hui Feng, Chongbin Xu, Bo Hu
- Abstract要約: マルチオーダーのハイパーグラフLaplacianと対応する総変動を提案する。
これは異なる順序の相互作用を区別し、高階の相互作用を正確に表現するのに役立つ。
- 参考スコア(独自算出の注目度): 8.573390845100333
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Capturing complex high-order interactions among data is an important task in
many scenarios. A common way to model high-order interactions is to use
hypergraphs whose topology can be mathematically represented by tensors.
Existing methods use a fixed-order tensor to describe the topology of the whole
hypergraph, which ignores the divergence of different-order interactions. In
this work, we take this divergence into consideration, and propose a
multi-order hypergraph Laplacian and the corresponding total variation. Taking
this total variation as a regularization term, we can utilize the topology
information contained by it to smooth the hypergraph signal. This can help
distinguish different-order interactions and represent high-order interactions
accurately.
- Abstract(参考訳): データ間の複雑な高階インタラクションのキャプチャは、多くのシナリオで重要なタスクです。
高次相互作用をモデル化する一般的な方法は、トポロジーをテンソルで数学的に表現できるハイパーグラフを使用することである。
既存の方法では、固定順序テンソルを使用してハイパーグラフ全体のトポロジーを記述するが、これは異なる順序の相互作用のばらつきを無視する。
本研究では,この分散を考慮に入れ,多階超グラフラプラシアンとそれに対応する全変分を提案する。
この総変動を正規化項として、ハイパーグラフ信号の平滑化に含むトポロジ情報を利用することができる。
これは異なる順序の相互作用を区別し、高階の相互作用を正確に表現するのに役立つ。
関連論文リスト
- Hypergraph Transformer for Semi-Supervised Classification [50.92027313775934]
我々は新しいハイパーグラフ学習フレームワークHyperGraph Transformer(HyperGT)を提案する。
HyperGTはTransformerベースのニューラルネットワークアーキテクチャを使用して、すべてのノードとハイパーエッジのグローバル相関を効果的に検討する。
局所接続パターンを保ちながら、グローバルな相互作用を効果的に組み込むことで、包括的なハイパーグラフ表現学習を実現する。
論文 参考訳(メタデータ) (2023-12-18T17:50:52Z) - Sheaf Hypergraph Networks [10.785525697855498]
本稿では,従来のハイパーグラフに余分な構造を加える数学的構造であるハイパーグラフのセルシーブを紹介する。
文献中の既存のラプラシアンからインスピレーションを得て、我々は2つの独特なシェフハイパーグラフラプラシアンの定式化を開発した。
我々は、これらの層ハイパーグラフラプラシアンを用いて、層ハイパーグラフニューラルネットワークと層ハイパーグラフ畳み込みニューラルネットワークの2つのモデルのカテゴリを設計する。
論文 参考訳(メタデータ) (2023-09-29T10:25:43Z) - From Hypergraph Energy Functions to Hypergraph Neural Networks [94.88564151540459]
パラメータ化されたハイパーグラフ正規化エネルギー関数の表現型族を示す。
次に、これらのエネルギーの最小化がノード埋め込みとして効果的に機能することを実証する。
提案した双レベルハイパーグラフ最適化と既存のGNNアーキテクチャを共通的に用いている。
論文 参考訳(メタデータ) (2023-06-16T04:40:59Z) - Tensorized Hypergraph Neural Networks [69.65385474777031]
我々は,新しいアジャケーシテンソルベースのtextbfTensorized textbfHypergraph textbfNeural textbfNetwork (THNN) を提案する。
THNNは高次外装機能パッシングメッセージを通じて、忠実なハイパーグラフモデリングフレームワークである。
3次元視覚オブジェクト分類のための2つの広く使われているハイパーグラフデータセットの実験結果から、モデルの有望な性能を示す。
論文 参考訳(メタデータ) (2023-06-05T03:26:06Z) - Equivariant Hypergraph Diffusion Neural Operators [81.32770440890303]
ハイパーグラフを符号化するためにニューラルネットワークを使用するハイパーグラフニューラルネットワーク(HNN)は、データの高次関係をモデル化する有望な方法を提供する。
本研究ではED-HNNと呼ばれる新しいHNNアーキテクチャを提案する。
実世界の9つのハイパーグラフデータセットのノード分類におけるED-HNNの評価を行った。
論文 参考訳(メタデータ) (2022-07-14T06:17:00Z) - Adaptive Neural Message Passing for Inductive Learning on Hypergraphs [21.606287447052757]
本稿では,新しいハイパーグラフ学習フレームワークHyperMSGを紹介する。
各ノードの次数集中度に関連する注意重みを学習することで、データとタスクに適応する。
堅牢で、幅広いタスクやデータセットで最先端のハイパーグラフ学習手法より優れています。
論文 参考訳(メタデータ) (2021-09-22T12:24:02Z) - Generative hypergraph clustering: from blockmodels to modularity [26.99290024958576]
異質なノード度とエッジサイズを持つクラスタ化ハイパーグラフの表現的生成モデルを提案する。
我々は,100万ノードの合成ハイパーグラフを用いた実験など,ハイパーグラフ・ルーバインは高度にスケーラブルであることを示す。
このモデルを用いて,学校連絡ネットワークにおける高次構造の異なるパターン,米国議会法案共同提案,米国議会委員会,共同購入行動における製品カテゴリ,ホテルロケーションを分析した。
論文 参考訳(メタデータ) (2021-01-24T00:25:22Z) - Learning over Families of Sets -- Hypergraph Representation Learning for
Higher Order Tasks [12.28143554382742]
可変サイズのハイパーエッジの表現を実証的に表現するためのハイパーグラフニューラルネットワークを開発した。
複数の実世界のハイパーグラフデータセットのパフォーマンスを評価し、最新モデルよりも一貫性のある大幅な精度向上を実証します。
論文 参考訳(メタデータ) (2021-01-19T18:37:50Z) - Hyperbolic Graph Embedding with Enhanced Semi-Implicit Variational
Inference [48.63194907060615]
半単純グラフ変分自動エンコーダを用いて,低次元グラフ潜在表現における高次統計量を取得する。
我々は、階層構造を示すグラフを効率的に表現するために、ポインケア埋め込みを通して潜在空間に双曲幾何学を組み込む。
論文 参考訳(メタデータ) (2020-10-31T05:48:34Z) - HyperSAGE: Generalizing Inductive Representation Learning on Hypergraphs [24.737560790401314]
2段階のニューラルメッセージパッシング戦略を用いて、ハイパーグラフを介して情報を正確かつ効率的に伝播する新しいハイパーグラフ学習フレームワークHyperSAGEを提案する。
本稿では,HyperSAGEが代表的ベンチマークデータセット上で最先端のハイパーグラフ学習手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-10-09T13:28:06Z) - Generalizing Convolutional Neural Networks for Equivariance to Lie
Groups on Arbitrary Continuous Data [52.78581260260455]
任意の特定のリー群からの変換に同値な畳み込み層を構築するための一般的な方法を提案する。
同じモデルアーキテクチャを画像、ボール・アンド・スティック分子データ、ハミルトン力学系に適用する。
論文 参考訳(メタデータ) (2020-02-25T17:40:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。