論文の概要: Learning to Persuade on the Fly: Robustness Against Ignorance
- arxiv url: http://arxiv.org/abs/2102.10156v2
- Date: Fri, 3 May 2024 05:08:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-06 18:43:25.945598
- Title: Learning to Persuade on the Fly: Robustness Against Ignorance
- Title(参考訳): 飛ぶことを学ぶ:無知に対するロバスト性
- Authors: You Zu, Krishnamurthy Iyer, Haifeng Xu,
- Abstract要約: 送信側と受信側のストリーム間の繰り返しの説得について検討し、その度に送信側は未知の分布から独立に引き出されたペイオフ関連状態を観測する。
送信者は、状態情報を選択的に共有することにより、受信者を説得して送信者の好みに沿った行動を取る。
標準モデルとは対照的に、送信側も受信側もその分布を知らないため、送信側はオンザフライで分布を学習しながら説得しなければならない。
- 参考スコア(独自算出の注目度): 26.915262694667746
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Motivated by information sharing in online platforms, we study repeated persuasion between a sender and a stream of receivers where at each time, the sender observes a payoff-relevant state drawn independently and identically from an unknown distribution, and shares state information with the receivers who each choose an action. The sender seeks to persuade the receivers into taking actions aligned with the sender's preference by selectively sharing state information. However, in contrast to the standard models, neither the sender nor the receivers know the distribution, and the sender has to persuade while learning the distribution on the fly. We study the sender's learning problem of making persuasive action recommendations to achieve low regret against the optimal persuasion mechanism with the knowledge of the distribution. To do this, we first propose and motivate a persuasiveness criterion for the unknown distribution setting that centers robustness as a requirement in the face of uncertainty. Our main result is an algorithm that, with high probability, is robustly-persuasive and achieves $O(\sqrt{T\log T})$ regret, where $T$ is the horizon length. Intuitively, at each time our algorithm maintains a set of candidate distributions, and chooses a signaling mechanism that is simultaneously persuasive for all of them. Core to our proof is a tight analysis about the cost of robust persuasion, which may be of independent interest. We further prove that this regret order is optimal (up to logarithmic terms) by showing that no algorithm can achieve regret better than $\Omega(\sqrt{T})$.
- Abstract(参考訳): オンラインプラットフォーム上での情報共有を動機として,送信側と受信側との繰り返しの説得について検討し,送信側は未知の分布から独立して引き出されたペイオフ関連状態を観察し,それぞれが行動を選択する受信側と状態情報を共有する。
送信者は、状態情報を選択的に共有することにより、受信者を説得して送信者の好みに沿った行動を取る。
しかし、標準モデルとは対照的に、送信側も受信側もその分布を知らないため、送信側はオンザフライで分布を学習しながら説得しなければならない。
本研究は, 最適な説得機構に反する低後悔を実現するため, 説得行動推薦を行う送信者の学習課題について, 分布の知識を用いて検討する。
そこで我々はまず,不確実性に直面した要求としてロバスト性を重視した未知の分布設定に対する説得性基準を提案し,動機づける。
我々の主な結果は、高い確率で強説得力を持ち、$O(\sqrt{T\log T})$ regret, ここでは$T$は地平線長である。
直感的には、我々のアルゴリズムは候補分布の集合を維持し、それらすべてに対して同時に説得力のある信号伝達機構を選択する。
私たちの証明の核心は、堅牢な説得のコストに関する厳密な分析であり、それは独立した関心事かもしれない。
さらに、この後悔順序が最適(対数項まで)であることは、アルゴリズムが$\Omega(\sqrt{T})$よりも後悔を達成できないことを示すことで証明する。
関連論文リスト
- Multi-Agent Imitation Learning: Value is Easy, Regret is Hard [52.31989962031179]
我々は,エージェント群を協調させようとする学習者の視点で,マルチエージェント模倣学習(MAIL)問題を研究する。
MAILの以前の作業のほとんどは、基本的には、デモのサポート内で専門家の振る舞いにマッチする問題を減らすものです。
エージェントが戦略的でないという仮定の下で、学習者と専門家の間の価値ギャップをゼロにするのに十分であるが、戦略的エージェントによる逸脱を保証するものではない。
論文 参考訳(メタデータ) (2024-06-06T16:18:20Z) - Nearly Optimal Algorithms for Contextual Dueling Bandits from Adversarial Feedback [58.66941279460248]
人からのフィードバックから学ぶことは、大言語モデル(LLM)のような生成モデルを調整する上で重要な役割を果たす
本稿では,本問題の領域内モデルについて考察する。-文脈的デュエルバンディットと敵対的フィードバックを併用し,真の嗜好ラベルを敵によって反転させることができる。
本稿では,不確実性重み付き最大推定に基づく頑健なコンテキストデュエルバンドイット(アルゴ)を提案する。
論文 参考訳(メタデータ) (2024-04-16T17:59:55Z) - Learning How to Strategically Disclose Information [6.267574471145217]
送信者が未知のタイプの受信機と対話する情報設計のオンライン版を考える。
我々は、$mathcalO(sqrtT)$ regretが完全な情報フィードバックで達成可能であることを示す。
また,一般凸ユーティリティ関数に対して$mathcalO(sqrtT)$ regretを送信者が達成できる新しいパラメトリゼーションを提案する。
論文 参考訳(メタデータ) (2024-03-13T17:44:16Z) - Markov Persuasion Processes: Learning to Persuade from Scratch [37.92189925462977]
ベイズによる説得では、情報発信者は、望ましい行動をとるよう説得するために、情報を受信者に戦略的に開示する。
我々は、部分的なフィードバックで作業する送信者のための学習アルゴリズムを設計する。
最適情報開示ポリシーに対する後悔はエピソード数で微妙に増加することを証明している。
論文 参考訳(メタデータ) (2024-02-05T15:09:41Z) - Algorithmic Persuasion Through Simulation [51.23082754429737]
本研究では,受取人に製品購入などの二元的行動を取るよう説得するベイズ説得ゲームについて検討する。
送信者は、製品の品質が高いか低いかなどの世界の(バイナリ)状態について通知されるが、受信者の信念やユーティリティに関する情報は限られている。
顧客の調査やユーザスタディ、最近のAIの進歩によって動機づけられた私たちは、受信者の振る舞いをシミュレートする託宣をクエリすることで、送信側が受信者についてより深く学ぶことを可能にする。
論文 参考訳(メタデータ) (2023-11-29T23:01:33Z) - Pure Exploration under Mediators' Feedback [63.56002444692792]
マルチアームバンディット(Multi-armed bandits)は、各インタラクションステップにおいて、学習者が腕を選択し、報酬を観察する、シーケンシャルな意思決定フレームワークである。
本稿では,学習者が仲介者の集合にアクセスできるシナリオについて考察する。
本稿では,学習者には仲介者の方針が知られていると仮定して,最適な腕を発見するための逐次的意思決定戦略を提案する。
論文 参考訳(メタデータ) (2023-08-29T18:18:21Z) - Sequential Information Design: Learning to Persuade in the Dark [49.437419242582884]
本研究では,自己関心の受信者の行動に影響を及ぼそうとする情報発信者が直面する繰り返し情報設計問題について検討する。
各ラウンドにおいて、送信者は、シーケンシャル意思決定(SDM)問題におけるランダムイベントの実現を観察する。
これは、そのような情報をレシーバーに段階的に開示し、彼らが(望まれる)アクションレコメンデーションに従うように説得する方法の課題である。
論文 参考訳(メタデータ) (2022-09-08T17:08:12Z) - Peer Selection with Noisy Assessments [43.307040330622186]
現在最も正確なピアレビューアルゴリズムであるPeerNominationをWeightedPeerNominationに拡張します。
重み付け方式により、選択の全体的な精度が大幅に向上できることを解析的に示す。
論文 参考訳(メタデータ) (2021-07-21T14:47:11Z) - VCG Mechanism Design with Unknown Agent Values under Stochastic Bandit
Feedback [104.06766271716774]
本研究では,エージェントが自己の価値を知らない場合に,マルチラウンドの福祉最大化機構設計問題について検討する。
まず、福祉に対する後悔の3つの概念、各エージェントの個々のユーティリティ、メカニズムの3つの概念を定義します。
当社のフレームワークは価格体系を柔軟に制御し、エージェントと販売者の後悔のトレードオフを可能にする。
論文 参考訳(メタデータ) (2020-04-19T18:00:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。