論文の概要: Algorithmic Persuasion Through Simulation
- arxiv url: http://arxiv.org/abs/2311.18138v4
- Date: Tue, 11 Jun 2024 15:51:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-13 00:48:47.073895
- Title: Algorithmic Persuasion Through Simulation
- Title(参考訳): シミュレーションによるアルゴリズムによる説得
- Authors: Keegan Harris, Nicole Immorlica, Brendan Lucier, Aleksandrs Slivkins,
- Abstract要約: 本研究では,受取人に製品購入などの二元的行動を取るよう説得するベイズ説得ゲームについて検討する。
送信者は、製品の品質が高いか低いかなどの世界の(バイナリ)状態について通知されるが、受信者の信念やユーティリティに関する情報は限られている。
顧客の調査やユーザスタディ、最近のAIの進歩によって動機づけられた私たちは、受信者の振る舞いをシミュレートする託宣をクエリすることで、送信側が受信者についてより深く学ぶことを可能にする。
- 参考スコア(独自算出の注目度): 51.23082754429737
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study a Bayesian persuasion game where a sender wants to persuade a receiver to take a binary action, such as purchasing a product. The sender is informed about the (binary) state of the world, such as whether the quality of the product is high or low, but only has limited information about the receiver's beliefs and utilities. Motivated by customer surveys, user studies, and recent advances in AI, we allow the sender to learn more about the receiver by querying an oracle that simulates the receiver's behavior. After a fixed number of queries, the sender commits to a messaging policy and the receiver takes the action that maximizes her expected utility given the message she receives. We characterize the sender's optimal messaging policy given any distribution over receiver types. We then design a polynomial-time querying algorithm that optimizes the sender's expected utility in this game. We also consider approximate oracles, more general query structures, and costly queries.
- Abstract(参考訳): 本研究では,受取人に製品購入などの二元的行動を取るよう説得するベイズ説得ゲームについて検討する。
送信者は、製品の品質が高いか低いかなどの世界の(バイナリ)状態について通知されるが、受信者の信念やユーティリティに関する情報は限られている。
顧客の調査やユーザスタディ、最近のAIの進歩によって動機づけられた私たちは、受信者の振る舞いをシミュレートする託宣をクエリすることで、送信側が受信者についてより深く学ぶことを可能にする。
一定の数のクエリの後、送信側はメッセージポリシーにコミットし、受信側は受信したメッセージに対して期待するユーティリティを最大化するアクションを取る。
我々は受信側が受信側タイプにまたがる分散を考慮すれば,送信側が最適なメッセージポリシーを特徴付ける。
次に,このゲームにおいて,送信者の期待するユーティリティを最適化する多項式時間クエリアルゴリズムを設計する。
また、近似オラクル、より一般的なクエリ構造、高価なクエリについても検討しています。
関連論文リスト
- Beyond Thumbs Up/Down: Untangling Challenges of Fine-Grained Feedback for Text-to-Image Generation [67.88747330066049]
きめ細かいフィードバックは、画像の品質と迅速な調整におけるニュアンスドの区別を捉えます。
粗いフィードバックに対する優位性を示すことは、自動ではないことを示す。
きめ細かいフィードバックを抽出し活用する上で重要な課題を特定します。
論文 参考訳(メタデータ) (2024-06-24T17:19:34Z) - Prompt Optimization with Human Feedback [69.95991134172282]
人間のフィードバックによる迅速な最適化問題(POHF)について検討する。
我々は自動POHF(Automatic POHF)というアルゴリズムを導入する。
その結果、APOHFは、少数の好みフィードバックインスタンスを用いて、効率的に適切なプロンプトを見つけることができることがわかった。
論文 参考訳(メタデータ) (2024-05-27T16:49:29Z) - Learning How to Strategically Disclose Information [6.267574471145217]
送信者が未知のタイプの受信機と対話する情報設計のオンライン版を考える。
我々は、$mathcalO(sqrtT)$ regretが完全な情報フィードバックで達成可能であることを示す。
また,一般凸ユーティリティ関数に対して$mathcalO(sqrtT)$ regretを送信者が達成できる新しいパラメトリゼーションを提案する。
論文 参考訳(メタデータ) (2024-03-13T17:44:16Z) - Markov Persuasion Processes: Learning to Persuade from Scratch [37.92189925462977]
ベイズによる説得では、情報発信者は、望ましい行動をとるよう説得するために、情報を受信者に戦略的に開示する。
我々は、部分的なフィードバックで作業する送信者のための学習アルゴリズムを設計する。
最適情報開示ポリシーに対する後悔はエピソード数で微妙に増加することを証明している。
論文 参考訳(メタデータ) (2024-02-05T15:09:41Z) - Persuading a Behavioral Agent: Approximately Best Responding and
Learning [7.378697321839991]
本研究では,受信機が送信者の信号処理方式にほぼ最もよく対応できるベイズ説得モデルの緩和について検討する。
自然な仮定の下では,送信側は,予測ユーティリティが最適ユーティリティとほぼ同等に優れたことを保証した信号処理方式を見つけることができることを示す。
論文 参考訳(メタデータ) (2023-02-07T19:12:46Z) - Sequential Information Design: Learning to Persuade in the Dark [49.437419242582884]
本研究では,自己関心の受信者の行動に影響を及ぼそうとする情報発信者が直面する繰り返し情報設計問題について検討する。
各ラウンドにおいて、送信者は、シーケンシャル意思決定(SDM)問題におけるランダムイベントの実現を観察する。
これは、そのような情報をレシーバーに段階的に開示し、彼らが(望まれる)アクションレコメンデーションに従うように説得する方法の課題である。
論文 参考訳(メタデータ) (2022-09-08T17:08:12Z) - Multi-Receiver Online Bayesian Persuasion [51.94795123103707]
本研究では,未知の逆選択型の受信者に対して,送信者が繰り返し対面するオンライン学習フレームワークについて検討する。
オフラインモデルの慣習として、外部性やバイナリアクションのないケースに重点を置いています。
本稿では,損失関数を有限個に制限したオンライン学習問題に対処する一般的なオンライン降下スキームを提案する。
論文 参考訳(メタデータ) (2021-06-11T16:05:31Z) - Learning to Persuade on the Fly: Robustness Against Ignorance [26.915262694667746]
送信側と受信側のストリーム間の繰り返しの説得について検討し、その度に送信側は未知の分布から独立に引き出されたペイオフ関連状態を観測する。
送信者は、状態情報を選択的に共有することにより、受信者を説得して送信者の好みに沿った行動を取る。
標準モデルとは対照的に、送信側も受信側もその分布を知らないため、送信側はオンザフライで分布を学習しながら説得しなければならない。
論文 参考訳(メタデータ) (2021-02-19T21:02:15Z) - Meaningful Answer Generation of E-Commerce Question-Answering [77.89755281215079]
eコマースポータルでは、製品関連の質問に対する回答を生成することが重要な課題となっている。
本稿では,MPAG(Meaningful Product Answer Generator)と呼ばれる新しい生成ニューラルモデルを提案する。
MPAGは、製品レビュー、製品属性、プロトタイプの回答を考慮に入れて、安全な回答問題を緩和します。
論文 参考訳(メタデータ) (2020-11-14T14:05:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。