論文の概要: Persistence Homology for Link Prediction: An Interactive View
- arxiv url: http://arxiv.org/abs/2102.10255v1
- Date: Sat, 20 Feb 2021 04:33:59 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-23 14:53:29.883204
- Title: Persistence Homology for Link Prediction: An Interactive View
- Title(参考訳): リンク予測のための永続性ホモロジー:インタラクティブな視点
- Authors: Zuoyu Yan, Tengfei Ma, Liangcai Gao, Zhi Tang, Chao Chen
- Abstract要約: リンク予測は、グラフ構造データにとって重要な学習タスクです。
2つのノード間の相互作用を特徴付ける新しいトポロジカルアプローチを提案する。
また、異なるベンチマークで最新技術を上回るグラフニューラルネットワーク手法を提案する。
- 参考スコア(独自算出の注目度): 15.068319518015421
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Link prediction is an important learning task for graph-structured data. In
this paper, we propose a novel topological approach to characterize
interactions between two nodes. Our topological feature, based on the extended
persistence homology, encodes rich structural information regarding the
multi-hop paths connecting nodes. Based on this feature, we propose a graph
neural network method that outperforms state-of-the-arts on different
benchmarks. As another contribution, we propose a novel algorithm to more
efficiently compute the extended persistent diagrams for graphs. This algorithm
can be generally applied to accelerate many other topological methods for graph
learning tasks.
- Abstract(参考訳): リンク予測は、グラフ構造データにとって重要な学習タスクです。
本稿では,2つのノード間の相互作用を特徴付ける新しいトポロジカルアプローチを提案する。
我々の位相的特徴は、拡張永続ホモロジーに基づき、ノードを接続するマルチホップパスに関する豊富な構造情報を符号化する。
そこで本研究では,様々なベンチマークにおける最先端技術を上回るグラフニューラルネットワーク手法を提案する。
別の貢献として、グラフの拡張持続図をより効率的に計算する新しいアルゴリズムを提案する。
このアルゴリズムは、グラフ学習タスクの他の多くのトポロジカルな方法を加速するために一般的に適用することができる。
関連論文リスト
- Learning to Identify Graphs from Node Trajectories in Multi-Robot
Networks [15.36505600407192]
本稿では,グローバル収束保証付きグラフトポロジを効率的に発見する学習ベースアプローチを提案する。
マルチロボット生成および群れ処理におけるグラフの同定におけるアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2023-07-10T07:09:12Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
グラフレベルの学習は、比較、回帰、分類など、多くのタスクに適用されている。
グラフの集合を学習する伝統的なアプローチは、サブストラクチャのような手作りの特徴に依存している。
ディープラーニングは、機能を自動的に抽出し、グラフを低次元表現に符号化することで、グラフレベルの学習をグラフの規模に適応させるのに役立っている。
論文 参考訳(メタデータ) (2023-01-14T09:15:49Z) - Generative Graph Neural Networks for Link Prediction [13.643916060589463]
欠落したリンクを推測したり、観測されたグラフに基づいて急激なリンクを検出することは、グラフデータ分析における長年の課題である。
本稿では,GraphLPと呼ばれるネットワーク再構成理論に基づく,新しい,根本的に異なるリンク予測アルゴリズムを提案する。
リンク予測に使用される識別ニューラルネットワークモデルとは異なり、GraphLPは生成可能であり、ニューラルネットワークベースのリンク予測の新しいパラダイムを提供する。
論文 参考訳(メタデータ) (2022-12-31T10:07:19Z) - Automatic Relation-aware Graph Network Proliferation [182.30735195376792]
GNNを効率的に検索するためのARGNP(Automatic Relation-Aware Graph Network Proliferation)を提案する。
これらの操作は階層的なノード/リレーショナル情報を抽出し、グラフ上のメッセージパッシングのための異方的ガイダンスを提供する。
4つのグラフ学習タスクのための6つのデータセットの実験により、我々の手法によって生成されたGNNは、現在最先端の手作りおよび検索に基づくGNNよりも優れていることが示された。
論文 参考訳(メタデータ) (2022-05-31T10:38:04Z) - Neural Approximation of Extended Persistent Homology on Graphs [23.606830663387775]
本稿では,グラフ上の拡張永続化図を計算するための新しい学習手法を提案する。
大規模で高密度なグラフでは、計算を100倍近く高速化する。
論文 参考訳(メタデータ) (2022-01-28T10:54:45Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [7.143879014059894]
典型的な好適なグラフでは、エッジを指向する可能性があり、エッジをそのまま扱うか、あるいは単純に非指向にするかは、GNNモデルの性能に大きな影響を与える。
そこで我々は,グラフの方向性を適応的に学習するモデルを開発し,ノード間の長距離相関を生かした。
論文 参考訳(メタデータ) (2021-11-19T08:54:21Z) - Joint Graph Learning and Matching for Semantic Feature Correspondence [69.71998282148762]
本稿では,グラフマッチングを向上するための信頼度の高いグラフ構造を探索するために,GLAMという共用電子グラフ学習とマッチングネットワークを提案する。
提案手法は,3つの人気ビジュアルマッチングベンチマーク (Pascal VOC, Willow Object, SPair-71k) で評価される。
すべてのベンチマークにおいて、従来の最先端のグラフマッチング手法よりも大きなマージンを達成している。
論文 参考訳(メタデータ) (2021-09-01T08:24:02Z) - Co-embedding of Nodes and Edges with Graph Neural Networks [13.020745622327894]
グラフ埋め込みは、高次元および非ユークリッド特徴空間でデータ構造を変換しエンコードする方法である。
CensNetは一般的なグラフ埋め込みフレームワークで、ノードとエッジの両方を潜在機能空間に埋め込む。
提案手法は,4つのグラフ学習課題における最先端のパフォーマンスを達成または一致させる。
論文 参考訳(メタデータ) (2020-10-25T22:39:31Z) - Line Graph Neural Networks for Link Prediction [71.00689542259052]
実世界の多くのアプリケーションにおいて古典的なグラフ解析問題であるグラフリンク予測タスクについて検討する。
このフォーマリズムでは、リンク予測問題をグラフ分類タスクに変換する。
本稿では,線グラフをグラフ理論に用いて,根本的に異なる新しい経路を求めることを提案する。
特に、線グラフの各ノードは、元のグラフのユニークなエッジに対応するため、元のグラフのリンク予測問題は、グラフ分類タスクではなく、対応する線グラフのノード分類問題として等価に解決できる。
論文 参考訳(メタデータ) (2020-10-20T05:54:31Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
グラフ畳み込みは近傍の集約を行い、最も重要なグラフ操作の1つである。
いくつかの最近の研究で、この性能劣化は過度に滑らかな問題に起因している。
本研究では,大きな受容領域からの情報を適応的に組み込むディープ適応グラフニューラルネットワーク(DAGNN)を提案する。
論文 参考訳(メタデータ) (2020-07-18T01:11:14Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
本稿では,ノード近接を利用したグラフプーリング手法を提案し,そのマルチホップトポロジを用いたグラフデータの階層的表現学習を改善する。
その結果,提案したグラフプーリング戦略は,公開グラフ分類ベンチマークデータセットの集合において,最先端のパフォーマンスを達成できることが示唆された。
論文 参考訳(メタデータ) (2020-06-19T13:09:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。