論文の概要: Towards Teachable Conversational Agents
- arxiv url: http://arxiv.org/abs/2102.10387v1
- Date: Sat, 20 Feb 2021 16:56:24 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-23 20:47:10.446031
- Title: Towards Teachable Conversational Agents
- Title(参考訳): 教育可能な会話エージェントを目指して
- Authors: Nalin Chhibber, Edith Law
- Abstract要約: 対話型インタフェースを用いて、人間教師と対話型機械学習者の相互作用を調査するアイデアを探求する。
その結果,対話型エージェントの概念を検証し,対話型インタラクションから学習しようとする機械学習システムの開発に関連する要因を明らかにする。
- 参考スコア(独自算出の注目度): 9.003996147141919
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The traditional process of building interactive machine learning systems can
be viewed as a teacher-learner interaction scenario where the machine-learners
are trained by one or more human-teachers. In this work, we explore the idea of
using a conversational interface to investigate the interaction between
human-teachers and interactive machine-learners. Specifically, we examine
whether teachable AI agents can reliably learn from human-teachers through
conversational interactions, and how this learning compare with traditional
supervised learning algorithms. Results validate the concept of teachable
conversational agents and highlight the factors relevant for the development of
machine learning systems that intend to learn from conversational interactions.
- Abstract(参考訳): 対話型機械学習システムを構築する従来のプロセスは、機械教師が1人以上の人間教師によって訓練される教師と教師の相互作用シナリオと見なすことができます。
本研究では,人間-教師と対話型機械学習者とのインタラクションを,対話型インタフェースを用いて検討する。
具体的には、学習可能なAIエージェントが会話インタラクションを通じて人間-教師から確実に学習できるかどうか、そしてこの学習が従来の教師付き学習アルゴリズムとどのように比較できるかを検討する。
その結果,対話型エージェントの概念を検証し,対話型インタラクションから学習しようとする機械学習システムの開発に関連する要因を明らかにする。
関連論文リスト
- Mapping out the Space of Human Feedback for Reinforcement Learning: A Conceptual Framework [13.949126295663328]
我々は、対話型学習シナリオにおける人間のフィードバックの共通理解を開発することにより、機械学習と人間とコンピュータの相互作用のギャップを埋める。
そこで我々は,9つの重要な次元に基づいて,人的フィードバックから報酬に基づく学習を行うためのフィードバックタイプ分類を導入した。
フィードバックを表現できる人間の能力と、フィードバックから学習するエージェントの能力に影響を及ぼす、人間のフィードバックの質の指標を7つ同定する。
論文 参考訳(メタデータ) (2024-11-18T17:40:42Z) - Anticipating User Needs: Insights from Design Fiction on Conversational Agents for Computational Thinking [10.363782876965221]
本研究では,演習を通じて学生を段階的に指導する対話エージェントを構想し,その指導方法を教育的背景,スキルと欠陥,学習嗜好を意識して調整する。
本稿では,計算思考とコンピュータプログラミングの教育を指向した学習エージェントの今後の実装について考察する。
論文 参考訳(メタデータ) (2023-11-12T16:19:03Z) - Opportunities and Challenges in Neural Dialog Tutoring [54.07241332881601]
言語学習のための2つの対話学習データセットを用いて、様々な生成言語モデルを厳密に分析する。
現在のアプローチでは、制約のある学習シナリオでチューリングをモデル化できますが、制約の少ないシナリオではパフォーマンスが悪くなります。
人的品質評価では, モデルと接地木アノテーションの両方が, 同等のチュータリングの点で低い性能を示した。
論文 参考訳(メタデータ) (2023-01-24T11:00:17Z) - Human-AI Interaction Design in Machine Teaching [1.5791732557395555]
本論文は,3つの構成要素(viz.,教示インターフェース,機械学習者,知識ベース)を備えたMTフレームワークの提案と,教示インターフェースの実現に関わる人間とAIのインタラクション設計に重点を置いている。
MLタスクから始まるMTシステムの開発に対処する必要がある設計上の決定について概説する。
論文 参考訳(メタデータ) (2022-06-10T15:20:05Z) - Teachable Reinforcement Learning via Advice Distillation [161.43457947665073]
外部教師が提供した構造化アドバイスから学習する「教育可能な」意思決定システムに基づく対話型学習のための新しい指導パラダイムを提案する。
我々は、アドバイスから学ぶエージェントが、標準的な強化学習アルゴリズムよりも人的監督力の少ない新しいスキルを習得できることを示す。
論文 参考訳(メタデータ) (2022-03-19T03:22:57Z) - Improving mathematical questioning in teacher training [1.794107419334178]
高忠実でAIに基づくシミュレートされた教室システムにより、教師は効果的な教育戦略をリハーサルすることができる。
本稿では,教師が数学的質問のスキルを実践するのを支援するために,テキストベースの対話型エージェントを構築した。
論文 参考訳(メタデータ) (2021-12-02T05:33:03Z) - Iterative Teacher-Aware Learning [136.05341445369265]
人間の教育において、教師と学生はコミュニケーション効率を最大化するために適応的に交流することができる。
本稿では,教師の協調意図を可能性関数に組み込むことができる,勾配最適化に基づく教師認識学習者を提案する。
論文 参考訳(メタデータ) (2021-10-01T00:27:47Z) - Interactive Teaching for Conversational AI [2.5259192787433706]
現在の会話型AIシステムは、事前設計された要求のセットを理解し、関連するアクションを実行することを目的としている。
子どもが大人と対話する最初の言語を学習する方法に触発された本論文では、新しいTeachable AIシステムについて述べる。
インタラクティブな授業セッションを使ってエンドユーザーから直接、概念と呼ばれる新しい言語ナゲットを学ぶことができる。
論文 参考訳(メタデータ) (2020-12-02T04:08:49Z) - Learning Adaptive Language Interfaces through Decomposition [89.21937539950966]
本稿では,分解による新しいハイレベルな抽象化を学習するニューラルセマンティック解析システムを提案する。
ユーザは、新しい振る舞いを記述する高レベルな発話を低レベルなステップに分解することで、対話的にシステムを教える。
論文 参考訳(メタデータ) (2020-10-11T08:27:07Z) - Neural Multi-Task Learning for Teacher Question Detection in Online
Classrooms [50.19997675066203]
教師の音声記録から質問を自動的に検出するエンドツーエンドのニューラルネットワークフレームワークを構築している。
マルチタスク学習手法を取り入れることで,質問の種類によって意味的関係の理解を深めることが可能となる。
論文 参考訳(メタデータ) (2020-05-16T02:17:04Z) - Explainable Active Learning (XAL): An Empirical Study of How Local
Explanations Impact Annotator Experience [76.9910678786031]
本稿では、最近急増している説明可能なAI(XAI)のテクニックをアクティブラーニング環境に導入することにより、説明可能なアクティブラーニング(XAL)の新たなパラダイムを提案する。
本研究は,機械教育のインタフェースとしてのAI説明の利点として,信頼度校正を支援し,リッチな形式の教示フィードバックを可能にすること,モデル判断と認知作業負荷による潜在的な欠点を克服する効果を示す。
論文 参考訳(メタデータ) (2020-01-24T22:52:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。