論文の概要: Towards the Unification and Robustness of Perturbation and Gradient
Based Explanations
- arxiv url: http://arxiv.org/abs/2102.10618v1
- Date: Sun, 21 Feb 2021 14:51:18 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-23 14:51:54.689224
- Title: Towards the Unification and Robustness of Perturbation and Gradient
Based Explanations
- Title(参考訳): 摂動と勾配に基づく説明の統一とロバスト性に向けて
- Authors: Sushant Agarwal, Shahin Jabbari, Chirag Agarwal, Sohini Upadhyay,
Zhiwei Steven Wu, Himabindu Lakkaraju
- Abstract要約: グラデーションに基づく手法であるSmoothGradと、摂動に基づく手法であるLIMEの変種という2つのポピュラーなポストホック解釈手法を分析します。
これら2つの方法で出力された説明に対する明確な閉じた形式表現を導出し、両者が期待通り同じ説明に収束することを示した。
我々は,合成データと実世界データの両方について広範な実験を行い,理論を実証的に検証した。
- 参考スコア(独自算出の注目度): 23.41512277145231
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As machine learning black boxes are increasingly being deployed in critical
domains such as healthcare and criminal justice, there has been a growing
emphasis on developing techniques for explaining these black boxes in a post
hoc manner. In this work, we analyze two popular post hoc interpretation
techniques: SmoothGrad which is a gradient based method, and a variant of LIME
which is a perturbation based method. More specifically, we derive explicit
closed form expressions for the explanations output by these two methods and
show that they both converge to the same explanation in expectation, i.e., when
the number of perturbed samples used by these methods is large. We then
leverage this connection to establish other desirable properties, such as
robustness, for these techniques. We also derive finite sample complexity
bounds for the number of perturbations required for these methods to converge
to their expected explanation. Finally, we empirically validate our theory
using extensive experimentation on both synthetic and real world datasets.
- Abstract(参考訳): 機械学習のブラックボックスは、医療や刑事司法などの重要な領域にますます展開されているため、ポストホックな方法でこれらのブラックボックスを説明するテクニックの開発に重点が置かれている。
本研究では、グラデーションに基づく手法であるSmoothGradと、摂動に基づく手法であるLIMEの変種という2つのポピュラーなポストホック解釈手法を分析します。
より具体的には、これらの2つの方法によって出力される説明に対して明示的な閉じた形式表現を導出し、両者が期待値において同じ説明に収束することを示す。
その後、この接続を活用して、これらの技術のために堅牢性などの他の望ましい特性を確立します。
また、これらの方法が期待される説明に収束するために必要な摂動数に対する有限個のサンプル複雑性境界も導出する。
最後に,合成データと実世界データの両方について広範な実験を行い,理論を実証的に検証した。
関連論文リスト
- Derivative-Free Diffusion Manifold-Constrained Gradient for Unified XAI [59.96044730204345]
微分自由拡散多様体制約勾配(FreeMCG)を導入する。
FreeMCGは、与えられたニューラルネットワークの説明可能性を改善する基盤として機能する。
提案手法は,XAIツールが期待する本質性を保ちながら,最先端の成果が得られることを示す。
論文 参考訳(メタデータ) (2024-11-22T11:15:14Z) - MOUNTAINEER: Topology-Driven Visual Analytics for Comparing Local Explanations [6.835413642522898]
トポロジカルデータ解析(TDA)は、属性を一様グラフ表現に変換するために使用できるため、この領域で有効な方法である。
我々は、新しいトポロジ駆動視覚分析ツールであるMountaineerを紹介し、機械学習の実践者がこれらの表現をインタラクティブに分析し比較できるようにする。
我々は、Mountaineerによって、ブラックボックスMLの説明と、異なる説明の相違の原因を識別する領域を比較できることを示す。
論文 参考訳(メタデータ) (2024-06-21T19:28:50Z) - Explaining Predictive Uncertainty by Exposing Second-Order Effects [13.83164409095901]
本稿では,2次効果に基づく予測不確実性を説明する新しい手法を提案する。
提案手法は一般に適用可能であり,一般的な帰属手法を強力な二次不確実性説明器に変換することができる。
論文 参考訳(メタデータ) (2024-01-30T21:02:21Z) - On Gradient-like Explanation under a Black-box Setting: When Black-box Explanations Become as Good as White-box [9.368325306722321]
本稿では,クエリレベルのアクセスのみを通じて,勾配のような説明を生成するmethodAbr(gradient-estimation-based explanation)を提案する。
提案手法は, 数学的に厳密に証明された帰属法の基本特性の集合を持ち, その説明の質を保証している。
画像データに焦点をあてた理論的解析に加えて,提案手法が最先端のブラックボックス法よりも優れていることを示す実験結果が得られた。
論文 参考訳(メタデータ) (2023-08-18T08:24:57Z) - Learning with Explanation Constraints [91.23736536228485]
我々は、説明がモデルの学習をどのように改善するかを分析するための学習理論フレームワークを提供する。
我々は,多数の合成および実世界の実験に対して,我々のアプローチの利点を実証する。
論文 参考訳(メタデータ) (2023-03-25T15:06:47Z) - Restoration-Degradation Beyond Linear Diffusions: A Non-Asymptotic
Analysis For DDIM-Type Samplers [90.45898746733397]
本研究では拡散生成モデルに用いる決定論的サンプリング器の非漸近解析のためのフレームワークを開発する。
確率フローODEに沿った1ステップは,1) 条件付き対数線上を無限に先行して上昇する回復ステップ,2) 雑音を現在の勾配に向けて前向きに進行する劣化ステップの2段階で表すことができる。
論文 参考訳(メタデータ) (2023-03-06T18:59:19Z) - On the Benefits of Large Learning Rates for Kernel Methods [110.03020563291788]
本稿では,カーネル手法のコンテキストにおいて,現象を正確に特徴付けることができることを示す。
分離可能なヒルベルト空間における2次対象の最小化を考慮し、早期停止の場合、学習速度の選択が得られた解のスペクトル分解に影響を及ぼすことを示す。
論文 参考訳(メタデータ) (2022-02-28T13:01:04Z) - Pathwise Conditioning of Gaussian Processes [72.61885354624604]
ガウス過程後部をシミュレーションするための従来のアプローチでは、有限個の入力位置のプロセス値の限界分布からサンプルを抽出する。
この分布中心の特徴づけは、所望のランダムベクトルのサイズで3次スケールする生成戦略をもたらす。
条件付けのこのパスワイズ解釈が、ガウス過程の後部を効率的にサンプリングするのに役立てる近似の一般族をいかに生み出すかを示す。
論文 参考訳(メタデータ) (2020-11-08T17:09:37Z) - There and Back Again: Revisiting Backpropagation Saliency Methods [87.40330595283969]
正当性法は,各入力サンプルの重要度マップを作成することによって,モデルの予測を説明する。
このような手法の一般的なクラスは、信号のバックプロパゲートと結果の勾配の分析に基づいている。
本稿では,そのような手法を統一可能な単一のフレームワークを提案する。
論文 参考訳(メタデータ) (2020-04-06T17:58:08Z) - DANCE: Enhancing saliency maps using decoys [35.46266461621123]
本稿では,2段階の手順に従うことで,サリエンシ手法の堅牢性を向上させる枠組みを提案する。
まず、中間表現を変更せずに入力サンプルを微妙に変化させる摂動機構を導入する。
第2に、摂動サンプルの塩分マップを計算し、塩分マップを集約する新しい方法を提案する。
論文 参考訳(メタデータ) (2020-02-03T01:21:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。