論文の概要: Bilingual Language Modeling, A transfer learning technique for Roman
Urdu
- arxiv url: http://arxiv.org/abs/2102.10958v1
- Date: Mon, 22 Feb 2021 12:56:37 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-24 05:36:14.220948
- Title: Bilingual Language Modeling, A transfer learning technique for Roman
Urdu
- Title(参考訳): ローマ語ウルドゥー語のトランスファー学習手法であるバイリンガル言語モデリング
- Authors: Usama Khalid, Mirza Omer Beg, Muhammad Umair Arshad
- Abstract要約: 言語のコードスイッチングプロパティが、対応する高リソース言語からのクロス言語転送学習にどのように使用されるかを示す。
また、このトランスファー学習技術であるバイリンガル言語モデリングを用いて、ロマン・ウルドゥのより良いパフォーマンスモデルを作成する方法を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pretrained language models are now of widespread use in Natural Language
Processing. Despite their success, applying them to Low Resource languages is
still a huge challenge. Although Multilingual models hold great promise,
applying them to specific low-resource languages e.g. Roman Urdu can be
excessive. In this paper, we show how the code-switching property of languages
may be used to perform cross-lingual transfer learning from a corresponding
high resource language. We also show how this transfer learning technique
termed Bilingual Language Modeling can be used to produce better performing
models for Roman Urdu. To enable training and experimentation, we also present
a collection of novel corpora for Roman Urdu extracted from various sources and
social networking sites, e.g. Twitter. We train Monolingual, Multilingual, and
Bilingual models of Roman Urdu - the proposed bilingual model achieves 23%
accuracy compared to the 2% and 11% of the monolingual and multilingual models
respectively in the Masked Language Modeling (MLM) task.
- Abstract(参考訳): 事前訓練された言語モデルは、自然言語処理で広く使われている。
成功にもかかわらず、低リソース言語に適用することは依然として大きな課題である。
多言語モデルには大きな約束がありますが、特定の低リソース言語などに適用できます。
ローマのウルドゥー語は過剰である。
本稿では,対応する高資源言語から言語間トランスファー学習を行うために,言語のコードスイッチング特性をどのように利用するかを示す。
また、このトランスファー学習技術であるバイリンガル言語モデリングを用いて、ロマン・ウルドゥのより良いパフォーマンスモデルを作成する方法を示す。
トレーニングと実験を可能にするために,様々なソースやソーシャルネットワークサイトから抽出されたローマ・ウルドゥー語の新しいコーポラのコレクション,例えば,紹介する。
Twitter。
提案されたバイリンガルモデルは、Masked Language Modeling(MLM)タスクにおいて、それぞれ、モノリンガルモデルと多言語モデルの2%と11%と比較して23%の精度を達成しています。
関連論文リスト
- Towards a More Inclusive AI: Progress and Perspectives in Large Language Model Training for the Sámi Language [7.289015788793582]
本研究は、S'ami言語における技術参加の増大に焦点を当てている。
我々は,Ultra Low Resource (ULR)言語の言語モデリング問題に対して,MLコミュニティの注目を集めている。
Webから利用可能なS'ami言語リソースをコンパイルして、言語モデルをトレーニングするためのクリーンなデータセットを作成しました。
論文 参考訳(メタデータ) (2024-05-09T13:54:22Z) - The Less the Merrier? Investigating Language Representation in
Multilingual Models [8.632506864465501]
多言語モデルにおける言語表現について検討する。
我々は、コミュニティ中心のモデルが、低リソース言語で同じ家系の言語を区別する上で、より良い性能を発揮することを実験から観察した。
論文 参考訳(メタデータ) (2023-10-20T02:26:34Z) - Large Multilingual Models Pivot Zero-Shot Multimodal Learning across Languages [76.35234803589412]
MPMは、英語以外の言語で大規模なマルチモーダルモデルを訓練するための効果的な訓練パラダイムである。
画像・テキスト・テキスト・画像生成における大規模なマルチモーダルモデルVisCPMを構築し,中国語の最先端(オープンソース)性能を実現する。
論文 参考訳(メタデータ) (2023-08-23T09:55:41Z) - PolyLM: An Open Source Polyglot Large Language Model [57.64420154135178]
我々は6400億(B)トークンでトレーニングされた多言語大言語モデル(LLM)であるPolyLMについて述べる。
その多言語的能力を高めるために,1) バイリンガルデータをトレーニングデータに統合し,2) 事前学習中に英語以外のデータの比率を30%から60%に引き上げるカリキュラム学習戦略を採用する。
さらに,モデル微調整のために,132.7Kの多言語命令を自動的に生成する多言語自己指示手法を提案する。
論文 参考訳(メタデータ) (2023-07-12T09:00:37Z) - Romanization-based Large-scale Adaptation of Multilingual Language
Models [124.57923286144515]
大規模多言語事前学習言語モデル (mPLMs) は,NLPにおける多言語間移動のデファクトステートとなっている。
我々は、mPLMをローマン化および非ロマン化した14の低リソース言語コーパスに適用するためのデータとパラメータ効率の戦略を多数検討し、比較した。
以上の結果から, UROMAN をベースとしたトランスリテラルは,多くの言語で高い性能を達成できることがわかった。
論文 参考訳(メタデータ) (2023-04-18T09:58:34Z) - Distilling a Pretrained Language Model to a Multilingual ASR Model [3.4012007729454816]
教師のテキストモデルに埋め込まれた豊富な知識を学生の音声モデルに蒸留する。
我々は,100時間未満の音声データを持つCommonVoiceデータセットの低リソース言語20言語に対して,本手法の優位性を示す。
論文 参考訳(メタデータ) (2022-06-25T12:36:11Z) - Generalizing Multimodal Pre-training into Multilingual via Language
Acquisition [54.69707237195554]
英語のVision-Language Pre-Trainingは、様々な下流タスクで大きな成功を収めた。
この成功を英語以外の言語に一般化するために、Multilingual Vision-Language Pre-Trainingを通じていくつかの取り組みがなされている。
単言語視覚言語事前学習モデルを多言語に容易に一般化できるtextbfMultitextbfLingual textbfAcquisition (MLA) フレームワークを提案する。
論文 参考訳(メタデータ) (2022-05-29T08:53:22Z) - UNKs Everywhere: Adapting Multilingual Language Models to New Scripts [103.79021395138423]
マルチリンガルBERT(mBERT)やXLM-Rのような多言語言語モデルは、様々なNLPタスクに対して最先端の言語間転送性能を提供する。
キャパシティの制限と事前トレーニングデータの大きな差のため、リソース豊富な言語とリソースを対象とする言語には大きなパフォーマンスギャップがある。
本稿では,事前学習した多言語モデルの低リソース言語や未知のスクリプトへの高速かつ効果的な適応を可能にする新しいデータ効率手法を提案する。
論文 参考訳(メタデータ) (2020-12-31T11:37:28Z) - When Being Unseen from mBERT is just the Beginning: Handling New
Languages With Multilingual Language Models [2.457872341625575]
大量の生データに基づく事前学習言語モデルに基づく伝達学習は,NLPの最先端性能に到達するための新しい規範となっている。
このようなモデルは、目に見えない言語に対して複数の方法で振る舞うことを示す。
論文 参考訳(メタデータ) (2020-10-24T10:15:03Z) - Multilingual Translation with Extensible Multilingual Pretraining and
Finetuning [77.33262578776291]
これまでの研究は、bitextで微調整することで機械翻訳システムを作成できることを実証してきた。
多言語翻訳モデルは多言語微調整により作成可能であることを示す。
事前訓練されたモデルは、性能を損なうことなく、追加の言語を組み込むように拡張できることを実証する。
論文 参考訳(メタデータ) (2020-08-02T05:36:55Z) - Can Multilingual Language Models Transfer to an Unseen Dialect? A Case
Study on North African Arabizi [2.76240219662896]
本研究では,多言語モデルによる未知の方言の処理能力について検討する。
弊社のケーススタディは、北アフリカアラビアのユーザ生成を例に挙げる。
ゼロショットおよび教師なし適応シナリオでは、多言語言語モデルがそのような未知の方言に変換できることが示される。
論文 参考訳(メタデータ) (2020-05-01T11:29:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。