Classification of Breast Cancer Lesions in Ultrasound Images by using
Attention Layer and loss Ensembles in Deep Convolutional Neural Networks
- URL: http://arxiv.org/abs/2102.11519v1
- Date: Tue, 23 Feb 2021 06:49:12 GMT
- Title: Classification of Breast Cancer Lesions in Ultrasound Images by using
Attention Layer and loss Ensembles in Deep Convolutional Neural Networks
- Authors: Elham Yousef Kalaf, Ata Jodeiri, Seyed Kamaledin Setarehdan, Ng Wei
Lin, Kartini Binti Rahman, Nur Aishah Taib, Sarinder Kaur Dhillon
- Abstract summary: We propose a new framework for classification of breast cancer lesions by use of an attention module in modified VGG16 architecture.
We also proposed new ensembled loss function which is the combination of binary cross-entropy and logarithm of the hyperbolic cosine loss to improve the model discrepancy between classified lesions and its labels.
The proposed model in this study outperformed other modified VGG16 architectures with the accuracy of 93% and also the results are competitive with other state of the art frameworks for classification of breast cancer lesions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reliable classification of benign and malignant lesions in breast ultrasound
images can provide an effective and relatively low cost method for early
diagnosis of breast cancer. The accuracy of the diagnosis is however highly
dependent on the quality of the ultrasound systems and the experience of the
users (radiologists). The leverage in deep convolutional neural network
approaches provided solutions in efficient analysis of breast ultrasound
images. In this study, we proposed a new framework for classification of breast
cancer lesions by use of an attention module in modified VGG16 architecture. We
also proposed new ensembled loss function which is the combination of binary
cross-entropy and logarithm of the hyperbolic cosine loss to improve the model
discrepancy between classified lesions and its labels. Networks trained from
pretrained ImageNet weights, and subsequently fine-tuned with ultrasound
datasets. The proposed model in this study outperformed other modified VGG16
architectures with the accuracy of 93% and also the results are competitive
with other state of the art frameworks for classification of breast cancer
lesions. In this study, we employed transfer learning approaches with the
pre-trained VGG16 architecture. Different CNN models for classification task
were trained to predict benign or malignant lesions in breast ultrasound
images. Our Experimental results show that the choice of loss function is
highly important in classification task and by adding an attention block we
could empower the performance our model.
Related papers
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.
This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
The biggest challenge in the application of deep learning to the medical domain is the availability of training data.
Data augmentation is a typical methodology used in machine learning when confronted with a limited data set.
In this work, a StyleGAN2-ADA model of Generative Adversarial Networks is trained on the limited COVID-19 chest X-ray image set.
arXiv Detail & Related papers (2023-04-18T15:39:58Z) - Improving the diagnosis of breast cancer based on biophysical ultrasound
features utilizing machine learning [0.0]
We propose a biophysical feature based machine learning method for breast cancer detection.
The overall accuracy for the most common types and sizes of breast lesions in our study exceeded 98.0% for classification and 0.98 for an area under the receiver operating characteristic curve.
arXiv Detail & Related papers (2022-07-13T23:53:09Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
We present a new type of discriminator, the segmentor, to accurately locate the lesions and improve the visual quality of pseudo-healthy images.
We apply the generated images into medical image enhancement and utilize the enhanced results to cope with the low contrast problem.
Comprehensive experiments on the T2 modality of BraTS demonstrate that the proposed method substantially outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2022-03-29T08:41:17Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - RCA-IUnet: A residual cross-spatial attention guided inception U-Net
model for tumor segmentation in breast ultrasound imaging [0.6091702876917281]
The article introduces an efficient residual cross-spatial attention guided inception U-Net (RCA-IUnet) model with minimal training parameters for tumor segmentation.
The RCA-IUnet model follows U-Net topology with residual inception depth-wise separable convolution and hybrid pooling layers.
Cross-spatial attention filters are added to suppress the irrelevant features and focus on the target structure.
arXiv Detail & Related papers (2021-08-05T10:35:06Z) - DenseNet for Breast Tumor Classification in Mammographic Images [0.0]
The aim of this study is to build a deep convolutional neural network method for automatic detection, segmentation, and classification of breast lesions in mammography images.
Based on deep learning the Mask-CNN (RoIAlign) method was developed to features selection and extraction; and the classification was carried out by DenseNet architecture.
arXiv Detail & Related papers (2021-01-24T03:30:59Z) - A Deep Learning Study on Osteosarcoma Detection from Histological Images [6.341765152919201]
The most common type of primary malignant bone tumor is osteosarcoma.
CNNs can significantly decrease surgeon's workload and make a better prognosis of patient conditions.
CNNs need to be trained on a large amount of data in order to achieve a more trustworthy performance.
arXiv Detail & Related papers (2020-11-02T18:16:17Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - Synthesizing lesions using contextual GANs improves breast cancer
classification on mammograms [0.4297070083645048]
We present a novel generative adversarial network (GAN) model for data augmentation that can realistically synthesize and remove lesions on mammograms.
With self-attention and semi-supervised learning components, the U-net-based architecture can generate high resolution (256x256px) outputs.
arXiv Detail & Related papers (2020-05-29T21:23:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.