SISE-PC: Semi-supervised Image Subsampling for Explainable Pathology
- URL: http://arxiv.org/abs/2102.11560v1
- Date: Tue, 23 Feb 2021 09:00:15 GMT
- Title: SISE-PC: Semi-supervised Image Subsampling for Explainable Pathology
- Authors: Sohini Roychowdhury, Kwok Sun Tang, Mohith Ashok, Anoop Sanka
- Abstract summary: We propose a novel active learning framework that identifies a minimal sub-sampled dataset containing the most uncertain OCT image samples.
The proposed method can be extended to other medical images to minimize prediction costs.
- Score: 0.7226144684379189
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Although automated pathology classification using deep learning (DL) has
proved to be predictively efficient, DL methods are found to be data and
compute cost intensive. In this work, we aim to reduce DL training costs by
pre-training a Resnet feature extractor using SimCLR contrastive loss for
latent encoding of OCT images. We propose a novel active learning framework
that identifies a minimal sub-sampled dataset containing the most uncertain OCT
image samples using label propagation on the SimCLR latent encodings. The
pre-trained Resnet model is then fine-tuned with the labelled minimal
sub-sampled data and the underlying pathological sites are visually explained.
Our framework identifies upto 2% of OCT images to be most uncertain that need
prioritized specialist attention and that can fine-tune a Resnet model to
achieve upto 97% classification accuracy. The proposed method can be extended
to other medical images to minimize prediction costs.
Related papers
- Less is more: Ensemble Learning for Retinal Disease Recognition Under
Limited Resources [12.119196313470887]
This paper introduces a novel ensemble learning mechanism designed for recognizing retinal diseases under limited resources.
The mechanism leverages insights from multiple pre-trained models, facilitating the transfer and adaptation of their knowledge to Retinal OCT images.
arXiv Detail & Related papers (2024-02-15T06:58:25Z) - Feature-oriented Deep Learning Framework for Pulmonary Cone-beam CT
(CBCT) Enhancement with Multi-task Customized Perceptual Loss [9.59233136691378]
Cone-beam computed tomography (CBCT) is routinely collected during image-guided radiation therapy.
Recent deep learning-based CBCT enhancement methods have shown promising results in suppressing artifacts.
We propose a novel feature-oriented deep learning framework that translates low-quality CBCT images into high-quality CT-like imaging.
arXiv Detail & Related papers (2023-11-01T10:09:01Z) - Class Activation Map-based Weakly supervised Hemorrhage Segmentation
using Resnet-LSTM in Non-Contrast Computed Tomography images [0.06269281581001895]
Intracranial hemorrhages (ICH) are routinely diagnosed using non-contrast CT (NCCT) for severity assessment.
Deep learning (DL)-based methods have shown great potential, however, training them requires a huge amount of manually annotated lesion-level labels.
We propose a novel weakly supervised DL method for ICH segmentation on NCCT scans, using image-level binary classification labels.
arXiv Detail & Related papers (2023-09-28T17:32:19Z) - One Sample Diffusion Model in Projection Domain for Low-Dose CT Imaging [10.797632196651731]
Low-dose computed tomography (CT) plays a significant role in reducing the radiation risk in clinical applications.
With the rapid development and wide application of deep learning, it has brought new directions for the development of low-dose CT imaging algorithms.
We propose a fully unsupervised one sample diffusion model (OSDM)in projection domain for low-dose CT reconstruction.
The results prove that OSDM is practical and effective model for reducing the artifacts and preserving the image quality.
arXiv Detail & Related papers (2022-12-07T13:39:23Z) - Physiology-based simulation of the retinal vasculature enables
annotation-free segmentation of OCT angiographs [8.596819713822477]
We present a pipeline to synthesize large amounts of realistic OCTA images with intrinsically matching ground truth labels.
Our proposed method is based on two novel components: 1) a physiology-based simulation that models the various retinal plexuses and 2) a suite of physics-based image augmentations.
arXiv Detail & Related papers (2022-07-22T14:22:22Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
We present a new type of discriminator, the segmentor, to accurately locate the lesions and improve the visual quality of pseudo-healthy images.
We apply the generated images into medical image enhancement and utilize the enhanced results to cope with the low contrast problem.
Comprehensive experiments on the T2 modality of BraTS demonstrate that the proposed method substantially outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2022-03-29T08:41:17Z) - Sharp-GAN: Sharpness Loss Regularized GAN for Histopathology Image
Synthesis [65.47507533905188]
Conditional generative adversarial networks have been applied to generate synthetic histopathology images.
We propose a sharpness loss regularized generative adversarial network to synthesize realistic histopathology images.
arXiv Detail & Related papers (2021-10-27T18:54:25Z) - Salvage Reusable Samples from Noisy Data for Robust Learning [70.48919625304]
We propose a reusable sample selection and correction approach, termed as CRSSC, for coping with label noise in training deep FG models with web images.
Our key idea is to additionally identify and correct reusable samples, and then leverage them together with clean examples to update the networks.
arXiv Detail & Related papers (2020-08-06T02:07:21Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - Multi-label Thoracic Disease Image Classification with Cross-Attention
Networks [65.37531731899837]
We propose a novel scheme of Cross-Attention Networks (CAN) for automated thoracic disease classification from chest x-ray images.
We also design a new loss function that beyond cross-entropy loss to help cross-attention process and is able to overcome the imbalance between classes and easy-dominated samples within each class.
arXiv Detail & Related papers (2020-07-21T14:37:00Z) - Deep Q-Network-Driven Catheter Segmentation in 3D US by Hybrid
Constrained Semi-Supervised Learning and Dual-UNet [74.22397862400177]
We propose a novel catheter segmentation approach, which requests fewer annotations than the supervised learning method.
Our scheme considers a deep Q learning as the pre-localization step, which avoids voxel-level annotation.
With the detected catheter, patch-based Dual-UNet is applied to segment the catheter in 3D volumetric data.
arXiv Detail & Related papers (2020-06-25T21:10:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.