論文の概要: RGB-D Railway Platform Monitoring and Scene Understanding for Enhanced
Passenger Safety
- arxiv url: http://arxiv.org/abs/2102.11730v1
- Date: Tue, 23 Feb 2021 14:44:34 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-24 13:59:18.276258
- Title: RGB-D Railway Platform Monitoring and Scene Understanding for Enhanced
Passenger Safety
- Title(参考訳): 旅客安全向上のためのRGB-D鉄道プラットフォームモニタリングとシーン理解
- Authors: Marco Wallner, Daniel Steininger, Verena Widhalm, Matthias
Sch\"orghuber, Csaba Beleznai
- Abstract要約: 本稿では,人間を地上平面上で検出し追跡するための柔軟な解析手法を提案する。
我々は、RGBと深度に基づく検出と追跡の複数の組み合わせについて検討する。
その結果,奥行きに基づく空間情報と学習表現の組み合わせにより,検出精度と追跡精度が大幅に向上した。
- 参考スコア(独自算出の注目度): 3.4298729855744026
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automated monitoring and analysis of passenger movement in safety-critical
parts of transport infrastructures represent a relevant visual surveillance
task. Recent breakthroughs in visual representation learning and spatial
sensing opened up new possibilities for detecting and tracking humans and
objects within a 3D spatial context. This paper proposes a flexible analysis
scheme and a thorough evaluation of various processing pipelines to detect and
track humans on a ground plane, calibrated automatically via stereo depth and
pedestrian detection. We consider multiple combinations within a set of RGB-
and depth-based detection and tracking modalities. We exploit the modular
concepts of Meshroom [2] and demonstrate its use as a generic vision processing
pipeline and scalable evaluation framework. Furthermore, we introduce a novel
open RGB-D railway platform dataset with annotations to support research
activities in automated RGB-D surveillance. We present quantitative results for
multiple object detection and tracking for various algorithmic combinations on
our dataset. Results indicate that the combined use of depth-based spatial
information and learned representations yields substantially enhanced detection
and tracking accuracies. As demonstrated, these enhancements are especially
pronounced in adverse situations when occlusions and objects not captured by
learned representations are present.
- Abstract(参考訳): 交通インフラの安全クリティカルな部分における乗客移動の自動監視と分析は、関連する視覚的監視タスクである。
視覚表現学習と空間センシングの最近の進歩は、3次元空間コンテキスト内で人間や物体を検出し追跡する新たな可能性を開いた。
本稿では,ステレオ深度と歩行者検出により自動的に校正される地上平面上の人間を検知し追跡する,様々な処理パイプラインの柔軟な解析手法と徹底的な評価を提案する。
我々は,RGB/Depth-based detection と Tracking modalities のセット内で複数の組み合わせを検討する。
We exploit the modular concept of Meshroom [2] and demonstrate its use as a generic vision processing pipeline and scalable evaluation framework。
さらに,自動rgb-d監視における研究活動を支援するアノテーション付きオープンrgb-d鉄道プラットフォームデータセットを提案する。
本稿では,データセット上の各種アルゴリズムの組み合わせに対する複数の対象検出と追跡について定量的な結果を示す。
その結果,奥行きに基づく空間情報と学習表現の組み合わせにより,検出精度と追跡精度が大幅に向上した。
示されるように、これらの強化は特に、学習された表現で捉えられない咬合や物体が存在する状況において顕著に発音される。
関連論文リスト
- InScope: A New Real-world 3D Infrastructure-side Collaborative Perception Dataset for Open Traffic Scenarios [13.821143687548494]
本稿では,新しい3次元インフラ側協調認識データセットについて紹介する。
InScopeは303の追跡軌道と187,787個の3D境界ボックスで20日間の捕獲期間をカプセル化している。
論文 参考訳(メタデータ) (2024-07-31T13:11:14Z) - Realtime Dynamic Gaze Target Tracking and Depth-Level Estimation [6.435984242701043]
車両のヘッドアップディスプレイ(HUD)のような様々な用途における透明ディスプレイ(TD)は、ユーザー体験に革命をもたらす可能性がある。
このイノベーションは、リアルタイムのヒューマンデバイスインタラクション、特に動的に変化するTDに対するユーザの視線を正確に識別し追跡する上で、大きな課題を引き起こします。
本研究では,(1)目視対象を特定し,動的に追跡する木に基づくアルゴリズム,(2)目視の深度レベルを目視追跡データから推定するマルチストリーム自己認識アーキテクチャからなる,リアルタイム目視監視のための2重頑健で効率的な体系的ソリューションを提案する。
論文 参考訳(メタデータ) (2024-06-09T20:52:47Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
ドメイン適応によるオブジェクトの無傷な特徴を関連付ける新しい3D検出フレームワークを提案する。
我々は,KITTIの3D検出ベンチマークにおいて,精度と速度の両面で最新の性能を実現する。
論文 参考訳(メタデータ) (2022-08-24T16:54:38Z) - Recent Advances in Embedding Methods for Multi-Object Tracking: A Survey [71.10448142010422]
マルチオブジェクトトラッキング(MOT)は、動画フレーム全体で対象物を関連付け、移動軌道全体を取得することを目的としている。
埋め込み法はMOTにおける物体の位置推定と時間的同一性関連において重要な役割を担っている。
まず 7 つの異なる視点からMOT への埋め込み手法の奥行き解析による包括的概要を述べる。
論文 参考訳(メタデータ) (2022-05-22T06:54:33Z) - Comparative study of 3D object detection frameworks based on LiDAR data
and sensor fusion techniques [0.0]
知覚システムは、車両の環境をリアルタイムで正確に解釈する上で重要な役割を果たす。
ディープラーニング技術は、センサーから大量のデータを意味情報に変換する。
3Dオブジェクト検出法は、LiDARやステレオカメラなどのセンサーから追加のポーズデータを利用することで、オブジェクトのサイズと位置に関する情報を提供する。
論文 参考訳(メタデータ) (2022-02-05T09:34:58Z) - Deep Feature Tracker: A Novel Application for Deep Convolutional Neural
Networks [0.0]
本稿では,特徴を確実に追跡する方法を学習できる,新しい,統合されたディープラーニングベースのアプローチを提案する。
Deep-PTと呼ばれる提案ネットワークは、畳み込みニューラルネットワークの相互相関であるトラッカーネットワークで構成されている。
ネットワークは、特徴追跡データセットに特別なデータセットがないため、複数のデータセットを使用してトレーニングされている。
論文 参考訳(メタデータ) (2021-07-30T23:24:29Z) - Artificial Intelligence Enabled Traffic Monitoring System [3.085453921856008]
本稿では,深層畳み込みニューラルネットワークを用いたリアルタイム交通映像の自動監視手法を提案する。
提案システムは、さまざまなトラフィック監視ニーズを自動化するために、最先端のディープラーニングアルゴリズムをデプロイする。
論文 参考訳(メタデータ) (2020-10-02T22:28:02Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
本稿では,モデル予測制御(MPC)の定式化を拡張したオンライン経路計画アーキテクチャを提案する。
我々のアルゴリズムは、状態推定の共分散を推論するリカレントニューラルネットワーク(RNN)とオブジェクト検出パイプラインを組み合わせる。
本手法のロバスト性は, 複雑な四足歩行ロボットの力学で検証され, ほとんどのロボットプラットフォームに適用可能である。
論文 参考訳(メタデータ) (2020-07-28T07:34:30Z) - Visual Tracking by TridentAlign and Context Embedding [71.60159881028432]
本稿では,Siamese ネットワークに基づく視覚的トラッキングのための新しい TridentAlign とコンテキスト埋め込みモジュールを提案する。
提案トラッカーの性能は最先端トラッカーに匹敵するが,提案トラッカーはリアルタイムに動作可能である。
論文 参考訳(メタデータ) (2020-07-14T08:00:26Z) - Benchmarking Unsupervised Object Representations for Video Sequences [111.81492107649889]
ViMON, OP3, TBA, SCALORの4つのオブジェクト中心アプローチの知覚能力を比較した。
この結果から,制約のない潜在表現を持つアーキテクチャは,オブジェクト検出やセグメンテーション,トラッキングといった観点から,より強力な表現を学習できる可能性が示唆された。
我々のベンチマークは、より堅牢なオブジェクト中心のビデオ表現を学習するための実りあるガイダンスを提供するかもしれない。
論文 参考訳(メタデータ) (2020-06-12T09:37:24Z) - Training-free Monocular 3D Event Detection System for Traffic
Surveillance [93.65240041833319]
既存のイベント検出システムは、主に学習ベースであり、大量のトレーニングデータが利用可能な場合、十分なパフォーマンスを実現している。
現実のシナリオでは、十分なラベル付きトレーニングデータの収集は高価であり、時には不可能である。
本稿では,交通監視のためのトレーニング不要な単眼3Dイベント検出システムを提案する。
論文 参考訳(メタデータ) (2020-02-01T04:42:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。