論文の概要: Recent Advances in Embedding Methods for Multi-Object Tracking: A Survey
- arxiv url: http://arxiv.org/abs/2205.10766v2
- Date: Tue, 12 Mar 2024 16:29:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-14 02:47:11.355960
- Title: Recent Advances in Embedding Methods for Multi-Object Tracking: A Survey
- Title(参考訳): マルチオブジェクトトラッキングのための埋め込み手法の最近の進歩:調査
- Authors: Gaoang Wang, Mingli Song, Jenq-Neng Hwang
- Abstract要約: マルチオブジェクトトラッキング(MOT)は、動画フレーム全体で対象物を関連付け、移動軌道全体を取得することを目的としている。
埋め込み法はMOTにおける物体の位置推定と時間的同一性関連において重要な役割を担っている。
まず 7 つの異なる視点からMOT への埋め込み手法の奥行き解析による包括的概要を述べる。
- 参考スコア(独自算出の注目度): 71.10448142010422
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-object tracking (MOT) aims to associate target objects across video
frames in order to obtain entire moving trajectories. With the advancement of
deep neural networks and the increasing demand for intelligent video analysis,
MOT has gained significantly increased interest in the computer vision
community. Embedding methods play an essential role in object location
estimation and temporal identity association in MOT. Unlike other computer
vision tasks, such as image classification, object detection,
re-identification, and segmentation, embedding methods in MOT have large
variations, and they have never been systematically analyzed and summarized. In
this survey, we first conduct a comprehensive overview with in-depth analysis
for embedding methods in MOT from seven different perspectives, including
patch-level embedding, single-frame embedding, cross-frame joint embedding,
correlation embedding, sequential embedding, tracklet embedding, and
cross-track relational embedding. We further summarize the existing widely used
MOT datasets and analyze the advantages of existing state-of-the-art methods
according to their embedding strategies. Finally, some critical yet
under-investigated areas and future research directions are discussed.
- Abstract(参考訳): マルチオブジェクトトラッキング(mot:multi-object tracking)は、ビデオフレームにまたがる対象オブジェクトを関連付けることを目的としている。
ディープニューラルネットワークの進歩とインテリジェントビデオ分析の需要の増加により、MOTはコンピュータビジョンコミュニティへの関心を著しく高めている。
埋め込み法はMOTにおける物体の位置推定と時間的同一性関連において重要な役割を果たす。
画像分類、オブジェクト検出、再識別、セグメンテーションなどの他のコンピュータビジョンタスクとは異なり、motへの埋め込みメソッドには大きなバリエーションがあり、体系的に分析され、まとめられていない。
本稿では,まず,パッチレベルの組込み,シングルフレーム組込み,クロスフレームジョイント組込み,相関組込み,シーケンシャル組込み,トラックレット組込み,クロストラックリレーショナル組込みといった7つの視点から,motにおける組込みメソッドの詳細な解析を行う。
さらに,既存のmotデータセットを要約し,その組込み戦略に従って既存の最先端手法の利点を分析する。
最後に,批判的かつ未調査領域と今後の研究方向について述べる。
関連論文リスト
- VOVTrack: Exploring the Potentiality in Videos for Open-Vocabulary Object Tracking [61.56592503861093]
オープンボキャブラリオブジェクト検出(OVD)とマルチオブジェクトトラッキング(MOT)の複雑さを両立させる。
OVMOT の既存のアプローチは、OVD と MOT の方法論を別個のモジュールとして統合することが多く、主に画像中心のレンズによる問題に焦点を当てている。
VOVTrackは、MOTとビデオ中心トレーニングに関連するオブジェクト状態を統合する新しい手法であり、ビデオオブジェクト追跡の観点からこの問題に対処する。
論文 参考訳(メタデータ) (2024-10-11T05:01:49Z) - Transformer Network for Multi-Person Tracking and Re-Identification in
Unconstrained Environment [0.6798775532273751]
マルチオブジェクトトラッキング(MOT)は、監視、スポーツ分析、自動運転、協調ロボットなど、さまざまな分野に深く応用されている。
我々は、オブジェクト検出とアイデンティティリンクを単一のエンドツーエンドのトレーニング可能なフレームワーク内にマージする統合MOT手法を提唱した。
本システムでは,記憶時記憶モジュールの高機能化を図り,アグリゲータを用いて効果的に記憶時記憶モジュールを符号化する。
論文 参考訳(メタデータ) (2023-12-19T08:15:22Z) - 3D Multiple Object Tracking on Autonomous Driving: A Literature Review [25.568952977339]
3次元多物体追跡(3D MOT)は、自律運転において重要な領域である。
3D MOTはその最重要課題にもかかわらず、無数の困難に直面している。
論文 参考訳(メタデータ) (2023-09-27T05:32:26Z) - UnsMOT: Unified Framework for Unsupervised Multi-Object Tracking with
Geometric Topology Guidance [6.577227592760559]
UnsMOTは、オブジェクトの外観と運動の特徴と幾何学的情報を組み合わせて、より正確なトラッキングを提供する新しいフレームワークである。
実験結果から, HOTA, IDF1, MOTAの計測値において, 最先端手法と比較して顕著な性能を示した。
論文 参考訳(メタデータ) (2023-09-03T04:58:12Z) - Unifying Tracking and Image-Video Object Detection [54.91658924277527]
TrIVD (Tracking and Image-Video Detection) は、画像OD、ビデオOD、MOTを1つのエンドツーエンドモデルに統合する最初のフレームワークである。
カテゴリラベルの相違やセマンティックな重複に対処するため、TrIVDは対象カテゴリに対する検出/追跡を基礎と理由として定式化している。
論文 参考訳(メタデータ) (2022-11-20T20:30:28Z) - 3DMODT: Attention-Guided Affinities for Joint Detection & Tracking in 3D
Point Clouds [95.54285993019843]
本稿では,3次元点雲における複数物体の同時検出と追跡手法を提案する。
本モデルでは,複数のフレームを用いた時間情報を利用してオブジェクトを検出し,一つのネットワーク上で追跡する。
論文 参考訳(メタデータ) (2022-11-01T20:59:38Z) - Deep Learning on Monocular Object Pose Detection and Tracking: A
Comprehensive Overview [8.442460766094674]
オブジェクトのポーズ検出と追跡は、自律運転、ロボット工学、拡張現実など、多くの分野で広く応用されているため、注目を集めている。
ディープラーニングは、他のものよりも優れたパフォーマンスを示した最も有望なものです。
本稿では,ディープラーニング技術経路に属するオブジェクトのポーズ検出と追跡の最近の進歩を概観する。
論文 参考訳(メタデータ) (2021-05-29T12:59:29Z) - RGB-D Railway Platform Monitoring and Scene Understanding for Enhanced
Passenger Safety [3.4298729855744026]
本稿では,人間を地上平面上で検出し追跡するための柔軟な解析手法を提案する。
我々は、RGBと深度に基づく検出と追跡の複数の組み合わせについて検討する。
その結果,奥行きに基づく空間情報と学習表現の組み合わせにより,検出精度と追跡精度が大幅に向上した。
論文 参考訳(メタデータ) (2021-02-23T14:44:34Z) - SoDA: Multi-Object Tracking with Soft Data Association [75.39833486073597]
マルチオブジェクトトラッキング(MOT)は、自動運転車の安全な配備の前提条件である。
観測対象間の依存関係をエンコードするトラック埋め込みの計算に注目するMOTに対する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2020-08-18T03:40:25Z) - Visual Tracking by TridentAlign and Context Embedding [71.60159881028432]
本稿では,Siamese ネットワークに基づく視覚的トラッキングのための新しい TridentAlign とコンテキスト埋め込みモジュールを提案する。
提案トラッカーの性能は最先端トラッカーに匹敵するが,提案トラッカーはリアルタイムに動作可能である。
論文 参考訳(メタデータ) (2020-07-14T08:00:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。