Set-valued classification -- overview via a unified framework
- URL: http://arxiv.org/abs/2102.12318v1
- Date: Wed, 24 Feb 2021 14:54:07 GMT
- Title: Set-valued classification -- overview via a unified framework
- Authors: Evgenii Chzhen, Christophe Denis, Mohamed Hebiri, Titouan Lorieul
- Abstract summary: Multi-class datasets can be extremely ambiguous and single-output predictions fail to deliver satisfactory performance.
By allowing predictors to predict a set of label candidates, set-valued classification offers a natural way to deal with this ambiguity.
We provide infinite sample optimal set-valued classification strategies and review a general plug-in principle to construct data-driven algorithms.
- Score: 15.109906768606644
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-class classification problem is among the most popular and well-studied
statistical frameworks. Modern multi-class datasets can be extremely ambiguous
and single-output predictions fail to deliver satisfactory performance. By
allowing predictors to predict a set of label candidates, set-valued
classification offers a natural way to deal with this ambiguity. Several
formulations of set-valued classification are available in the literature and
each of them leads to different prediction strategies. The present survey aims
to review popular formulations using a unified statistical framework. The
proposed framework encompasses previously considered and leads to new
formulations as well as it allows to understand underlying trade-offs of each
formulation. We provide infinite sample optimal set-valued classification
strategies and review a general plug-in principle to construct data-driven
algorithms. The exposition is supported by examples and pointers to both
theoretical and practical contributions. Finally, we provide experiments on
real-world datasets comparing these approaches in practice and providing
general practical guidelines.
Related papers
- Weighted Aggregation of Conformity Scores for Classification [9.559062601251464]
Conformal prediction is a powerful framework for constructing prediction sets with valid coverage guarantees.
We propose a novel approach that combines multiple score functions to improve the performance of conformal predictors.
arXiv Detail & Related papers (2024-07-14T14:58:03Z) - Top-K Pairwise Ranking: Bridging the Gap Among Ranking-Based Measures for Multi-Label Classification [120.37051160567277]
This paper proposes a novel measure named Top-K Pairwise Ranking (TKPR)
A series of analyses show that TKPR is compatible with existing ranking-based measures.
On the other hand, we establish a sharp generalization bound for the proposed framework based on a novel technique named data-dependent contraction.
arXiv Detail & Related papers (2024-07-09T09:36:37Z) - Trustworthy Classification through Rank-Based Conformal Prediction Sets [9.559062601251464]
We propose a novel conformal prediction method that employs a rank-based score function suitable for classification models.
Our approach constructs prediction sets that achieve the desired coverage rate while managing their size.
Our contributions include a novel conformal prediction method, theoretical analysis, and empirical evaluation.
arXiv Detail & Related papers (2024-07-05T10:43:41Z) - Distribution-free Conformal Prediction for Ordinal Classification [0.0]
Ordinal classification is common in real applications where the target variable has natural ordering among the class labels.
New conformal prediction methods are developed for constructing contiguous and non-contiguous prediction sets.
arXiv Detail & Related papers (2024-04-25T13:49:59Z) - Memory Consistency Guided Divide-and-Conquer Learning for Generalized
Category Discovery [56.172872410834664]
Generalized category discovery (GCD) aims at addressing a more realistic and challenging setting of semi-supervised learning.
We propose a Memory Consistency guided Divide-and-conquer Learning framework (MCDL)
Our method outperforms state-of-the-art models by a large margin on both seen and unseen classes of the generic image recognition.
arXiv Detail & Related papers (2024-01-24T09:39:45Z) - Synergies between Disentanglement and Sparsity: Generalization and
Identifiability in Multi-Task Learning [79.83792914684985]
We prove a new identifiability result that provides conditions under which maximally sparse base-predictors yield disentangled representations.
Motivated by this theoretical result, we propose a practical approach to learn disentangled representations based on a sparsity-promoting bi-level optimization problem.
arXiv Detail & Related papers (2022-11-26T21:02:09Z) - Learning Acceptance Regions for Many Classes with Anomaly Detection [19.269724165953274]
Many existing set-valued classification methods do not consider the possibility that a new class that never appeared in the training data appears in the test data.
We propose a Generalized Prediction Set (GPS) approach to estimate the acceptance regions while considering the possibility of a new class in the test data.
Unlike previous methods, the proposed method achieves a good balance between accuracy, efficiency, and anomaly detection rate.
arXiv Detail & Related papers (2022-09-20T19:40:33Z) - Query-Adaptive Predictive Inference with Partial Labels [0.0]
We propose a new methodology to construct predictive sets using only partially labeled data on top of black-box predictive models.
Our experiments highlight the validity of our predictive set construction as well as the attractiveness of a more flexible user-dependent loss framework.
arXiv Detail & Related papers (2022-06-15T01:48:42Z) - Resolving label uncertainty with implicit posterior models [71.62113762278963]
We propose a method for jointly inferring labels across a collection of data samples.
By implicitly assuming the existence of a generative model for which a differentiable predictor is the posterior, we derive a training objective that allows learning under weak beliefs.
arXiv Detail & Related papers (2022-02-28T18:09:44Z) - Three Steps to Multimodal Trajectory Prediction: Modality Clustering,
Classification and Synthesis [54.249502356251085]
We present a novel insight along with a brand-new prediction framework.
Our proposed method surpasses state-of-the-art works even without introducing social and map information.
arXiv Detail & Related papers (2021-03-14T06:21:03Z) - Binary Classification from Multiple Unlabeled Datasets via Surrogate Set
Classification [94.55805516167369]
We propose a new approach for binary classification from m U-sets for $mge2$.
Our key idea is to consider an auxiliary classification task called surrogate set classification (SSC)
arXiv Detail & Related papers (2021-02-01T07:36:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.