Weighted Aggregation of Conformity Scores for Classification
- URL: http://arxiv.org/abs/2407.10230v1
- Date: Sun, 14 Jul 2024 14:58:03 GMT
- Title: Weighted Aggregation of Conformity Scores for Classification
- Authors: Rui Luo, Zhixin Zhou,
- Abstract summary: Conformal prediction is a powerful framework for constructing prediction sets with valid coverage guarantees.
We propose a novel approach that combines multiple score functions to improve the performance of conformal predictors.
- Score: 9.559062601251464
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Conformal prediction is a powerful framework for constructing prediction sets with valid coverage guarantees in multi-class classification. However, existing methods often rely on a single score function, which can limit their efficiency and informativeness. We propose a novel approach that combines multiple score functions to improve the performance of conformal predictors by identifying optimal weights that minimize prediction set size. Our theoretical analysis establishes a connection between the weighted score functions and subgraph classes of functions studied in Vapnik-Chervonenkis theory, providing a rigorous mathematical basis for understanding the effectiveness of the proposed method. Experiments demonstrate that our approach consistently outperforms single-score conformal predictors while maintaining valid coverage, offering a principled and data-driven way to enhance the efficiency and practicality of conformal prediction in classification tasks.
Related papers
- Statistical Inference for Temporal Difference Learning with Linear Function Approximation [62.69448336714418]
Temporal Difference (TD) learning, arguably the most widely used for policy evaluation, serves as a natural framework for this purpose.
In this paper, we study the consistency properties of TD learning with Polyak-Ruppert averaging and linear function approximation, and obtain three significant improvements over existing results.
arXiv Detail & Related papers (2024-10-21T15:34:44Z) - Trustworthy Classification through Rank-Based Conformal Prediction Sets [9.559062601251464]
We propose a novel conformal prediction method that employs a rank-based score function suitable for classification models.
Our approach constructs prediction sets that achieve the desired coverage rate while managing their size.
Our contributions include a novel conformal prediction method, theoretical analysis, and empirical evaluation.
arXiv Detail & Related papers (2024-07-05T10:43:41Z) - The Penalized Inverse Probability Measure for Conformal Classification [0.5172964916120902]
The work introduces the Penalized Inverse Probability (PIP) nonconformity score, and its regularized version RePIP, that allow the joint optimization of both efficiency and informativeness.
The work shows how PIP-based conformal classifiers exhibit precisely the desired behavior in comparison with other nonconformity measures and strike a good balance between informativeness and efficiency.
arXiv Detail & Related papers (2024-06-13T07:37:16Z) - Conformal Classification with Equalized Coverage for Adaptively Selected Groups [9.016173836219524]
This paper introduces a conformal inference method to evaluate uncertainty in classification by generating prediction sets with valid coverage conditional on adaptively chosen features.
We demonstrate the validity and effectiveness of this method on simulated and real data sets.
arXiv Detail & Related papers (2024-05-23T23:32:37Z) - PAC-Bayes Generalization Certificates for Learned Inductive Conformal
Prediction [27.434939269672288]
We use PAC-Bayes theory to obtain generalization bounds on the coverage and the efficiency of set-valued predictors.
We leverage these theoretical results to provide a practical algorithm for using calibration data to fine-tune the parameters of a model and score function.
We evaluate the approach on regression and classification tasks, and outperform baselines calibrated using a Hoeffding bound-based PAC guarantee on ICP.
arXiv Detail & Related papers (2023-12-07T19:40:44Z) - Improving Adaptive Conformal Prediction Using Self-Supervised Learning [72.2614468437919]
We train an auxiliary model with a self-supervised pretext task on top of an existing predictive model and use the self-supervised error as an additional feature to estimate nonconformity scores.
We empirically demonstrate the benefit of the additional information using both synthetic and real data on the efficiency (width), deficit, and excess of conformal prediction intervals.
arXiv Detail & Related papers (2023-02-23T18:57:14Z) - Efficient and Differentiable Conformal Prediction with General Function
Classes [96.74055810115456]
We propose a generalization of conformal prediction to multiple learnable parameters.
We show that it achieves approximate valid population coverage and near-optimal efficiency within class.
Experiments show that our algorithm is able to learn valid prediction sets and improve the efficiency significantly.
arXiv Detail & Related papers (2022-02-22T18:37:23Z) - Selective Classification via One-Sided Prediction [54.05407231648068]
One-sided prediction (OSP) based relaxation yields an SC scheme that attains near-optimal coverage in the practically relevant high target accuracy regime.
We theoretically derive bounds generalization for SC and OSP, and empirically we show that our scheme strongly outperforms state of the art methods in coverage at small error levels.
arXiv Detail & Related papers (2020-10-15T16:14:27Z) - Combining Task Predictors via Enhancing Joint Predictability [53.46348489300652]
We present a new predictor combination algorithm that improves the target by i) measuring the relevance of references based on their capabilities in predicting the target, and ii) strengthening such estimated relevance.
Our algorithm jointly assesses the relevance of all references by adopting a Bayesian framework.
Based on experiments on seven real-world datasets from visual attribute ranking and multi-class classification scenarios, we demonstrate that our algorithm offers a significant performance gain and broadens the application range of existing predictor combination approaches.
arXiv Detail & Related papers (2020-07-15T21:58:39Z) - Efficient Ensemble Model Generation for Uncertainty Estimation with
Bayesian Approximation in Segmentation [74.06904875527556]
We propose a generic and efficient segmentation framework to construct ensemble segmentation models.
In the proposed method, ensemble models can be efficiently generated by using the layer selection method.
We also devise a new pixel-wise uncertainty loss, which improves the predictive performance.
arXiv Detail & Related papers (2020-05-21T16:08:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.