論文の概要: Deep Stochastic Volatility Model
- arxiv url: http://arxiv.org/abs/2102.12658v1
- Date: Thu, 25 Feb 2021 03:25:33 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-26 13:41:19.975761
- Title: Deep Stochastic Volatility Model
- Title(参考訳): 深部確率的ボラティリティモデル
- Authors: Xiuqin Xu, Ying Chen
- Abstract要約: 本論文では, 深部潜在変数モデルの枠組みに基づく深部ボラティリティモデル(DSVM)を提案する。
フレキシブルなディープラーニングモデルを使用して、過去のリターンに対する将来のボラティリティの依存性を自動的に検出する。
実データ分析では、DSVMはいくつかの一般的な代替ボラティリティモデルよりも優れています。
- 参考スコア(独自算出の注目度): 3.3970049571884204
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Volatility for financial assets returns can be used to gauge the risk for
financial market. We propose a deep stochastic volatility model (DSVM) based on
the framework of deep latent variable models. It uses flexible deep learning
models to automatically detect the dependence of the future volatility on past
returns, past volatilities and the stochastic noise, and thus provides a
flexible volatility model without the need to manually select features. We
develop a scalable inference and learning algorithm based on variational
inference. In real data analysis, the DSVM outperforms several popular
alternative volatility models. In addition, the predicted volatility of the
DSVM provides a more reliable risk measure that can better reflex the risk in
the financial market, reaching more quickly to a higher level when the market
becomes more risky and to a lower level when the market is more stable,
compared with the commonly used GARCH type model with a huge data set on the
U.S. stock market.
- Abstract(参考訳): 資産リターンのボラティリティは、金融市場のリスクを測定するのに使用できる。
本論文では, 深い潜在変数モデルの枠組みに基づくDSVM(Deep stochastic volatility Model)を提案する。
フレキシブルなディープラーニングモデルを使用して、過去のリターン、過去のボラティリティ、確率的ノイズに対する将来のボラティリティの依存性を自動的に検出し、手動で機能を選択することなく柔軟なボラティリティモデルを提供する。
変動推論に基づくスケーラブルな推論と学習アルゴリズムを開発しています。
実データ分析では、DSVMはいくつかの一般的な代替ボラティリティモデルよりも優れています。
加えて、dsvmの予測されるボラティリティは、金融市場のリスクをよりよく反映し、市場がよりリスクが高くなり、市場がより安定している場合にはより高いレベルに到達し、米国株式市場に巨大なデータが設定された一般的なgarch型モデルと比較して、より信頼性の高いリスク尺度を提供する。
関連論文リスト
- UncertaintyRAG: Span-Level Uncertainty Enhanced Long-Context Modeling for Retrieval-Augmented Generation [93.38604803625294]
IncertaintyRAG, a novel approach for long-context Retrieval-Augmented Generation (RAG)について紹介する。
我々は、SNR(Signal-to-Noise Ratio)ベースのスパン不確実性を用いて、テキストチャンク間の類似性を推定する。
不確かさRAGはLLaMA-2-7Bでベースラインを2.03%上回り、最先端の結果を得る。
論文 参考訳(メタデータ) (2024-10-03T17:39:38Z) - The Hybrid Forecast of S&P 500 Volatility ensembled from VIX, GARCH and LSTM models [0.0]
本研究では,S&P500のボラティリティ予測の精度を向上させるための4つの方法を検討する。
機械学習アプローチ,特にハイブリッドLSTMモデルは,従来のGARCHモデルよりも大幅に優れていることがわかった。
この研究結果は、より正確なボラティリティ予測を達成するための貴重な洞察を提供する。
論文 参考訳(メタデータ) (2024-07-23T18:28:16Z) - RVRAE: A Dynamic Factor Model Based on Variational Recurrent Autoencoder
for Stock Returns Prediction [5.281288833470249]
RVRAEは、市場データの時間的依存関係とノイズに対処する確率論的アプローチである。
揮発性株式市場のリスクモデリングに長けており、潜在空間分布からのばらつきを推定し、リターンを予測する。
論文 参考訳(メタデータ) (2024-03-04T21:48:32Z) - Stockformer: A Price-Volume Factor Stock Selection Model Based on Wavelet Transform and Multi-Task Self-Attention Networks [3.7608255115473592]
本稿では,ウェーブレット変換とマルチタスク自己アテンションネットワークを統合した価格-体積係数ストックセレクションモデルであるStockformerを紹介する。
ストックフォーマーは、株価のリターンを高頻度と低頻度に分解し、長期市場の動向と急激な出来事を注意深く捉えている。
実験結果から、Stockformerは複数の実市場データセットにおいて、既存の先進的な手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-11-23T04:33:47Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - HireVAE: An Online and Adaptive Factor Model Based on Hierarchical and
Regime-Switch VAE [113.47287249524008]
オンラインで適応的な環境で株価予測を行うファクターモデルを構築することは、依然としてオープンな疑問である。
本稿では,オンラインおよび適応型要素モデルであるHireVAEを,市場状況とストックワイド潜在要因の関係を埋め込んだ階層型潜在空間として提案する。
4つの一般的な実市場ベンチマークにおいて、提案されたHireVAEは、以前の手法よりもアクティブリターンの点で優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2023-06-05T12:58:13Z) - DeepVol: Volatility Forecasting from High-Frequency Data with Dilated Causal Convolutions [53.37679435230207]
本稿では,Dilated Causal Convolutionsに基づくDeepVolモデルを提案する。
実験結果から,提案手法は高頻度データからグローバルな特徴を効果的に学習できることが示唆された。
論文 参考訳(メタデータ) (2022-09-23T16:13:47Z) - Regime-based Implied Stochastic Volatility Model for Crypto Option
Pricing [0.0]
既存の手法は、新興デジタルアセット(DA)の揮発性の性質に対処できない
インプリッドボラティリティモデル(ISVM)による市場システム(MR)クラスタリングの最近の進歩を活用する。
ISVMは、インプリートボラティリティ(IV)データを使用することで、各感情駆動期間に投資家の期待を組み込むことができる。
MR-ISVMは,オプション価格モデルの高次特性におけるジャンプへの複雑な適応の負担を克服するために有効であることを示す。
論文 参考訳(メタデータ) (2022-08-15T15:31:42Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
伝統的な時系列計量法は、価格力学を駆動する多層相互作用の真の複雑さを捉えることができないことが多い。
最先端の2次最適化アルゴリズムを採用することで、時間的注意を払ってベイジアン双線形ニューラルネットワークを訓練する。
予測分布を用いて推定パラメータとモデル予測に関連する誤差や不確実性を解析することにより、ベイズモデルと従来のML代替品を徹底的に比較する。
論文 参考訳(メタデータ) (2022-03-07T18:59:54Z) - Predicting Risk-adjusted Returns using an Asset Independent
Regime-switching Model [0.0]
隠れマルコフモデルに基づくリスク調整されたリターン予測のために,アセットクラスに依存しないレギュラースイッチングモデルを構築した。
約20年間の日次金融市場の変化を分析し,リスク調整リターン予測の指標について検討した。
論文 参考訳(メタデータ) (2021-07-07T10:23:59Z) - A Sentiment Analysis Approach to the Prediction of Market Volatility [62.997667081978825]
金融ニュースとツイートから抽出された感情とFTSE100の動きの関係を調べました。
ニュース見出しから得られた感情は、市場のリターンを予測するシグナルとして使われる可能性があるが、ボラティリティには当てはまらない。
我々は,新たな情報の到着に応じて,市場の変動を予測するための正確な分類器を開発した。
論文 参考訳(メタデータ) (2020-12-10T01:15:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。