論文の概要: The Hybrid Forecast of S&P 500 Volatility ensembled from VIX, GARCH and LSTM models
- arxiv url: http://arxiv.org/abs/2407.16780v1
- Date: Tue, 23 Jul 2024 18:28:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-25 15:44:18.285796
- Title: The Hybrid Forecast of S&P 500 Volatility ensembled from VIX, GARCH and LSTM models
- Title(参考訳): VIX, GARCH, LSTMモデルを用いたS&P500のハイブリッド予測
- Authors: Natalia Roszyk, Robert Ślepaczuk,
- Abstract要約: 本研究では,S&P500のボラティリティ予測の精度を向上させるための4つの方法を検討する。
機械学習アプローチ,特にハイブリッドLSTMモデルは,従来のGARCHモデルよりも大幅に優れていることがわかった。
この研究結果は、より正確なボラティリティ予測を達成するための貴重な洞察を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Predicting the S&P 500 index volatility is crucial for investors and financial analysts as it helps assess market risk and make informed investment decisions. Volatility represents the level of uncertainty or risk related to the size of changes in a security's value, making it an essential indicator for financial planning. This study explores four methods to improve the accuracy of volatility forecasts for the S&P 500: the established GARCH model, known for capturing historical volatility patterns; an LSTM network that utilizes past volatility and log returns; a hybrid LSTM-GARCH model that combines the strengths of both approaches; and an advanced version of the hybrid model that also factors in the VIX index to gauge market sentiment. This analysis is based on a daily dataset that includes S&P 500 and VIX index data, covering the period from January 3, 2000, to December 21, 2023. Through rigorous testing and comparison, we found that machine learning approaches, particularly the hybrid LSTM models, significantly outperform the traditional GARCH model. Including the VIX index in the hybrid model further enhances its forecasting ability by incorporating real-time market sentiment. The results of this study offer valuable insights for achieving more accurate volatility predictions, enabling better risk management and strategic investment decisions in the volatile environment of the S&P 500.
- Abstract(参考訳): S&P500種株価指数のボラティリティ(変動性)の予測は、投資家や金融アナリストにとって極めて重要である。
ボラティリティは、セキュリティの価値の変化の大きさに関する不確実性やリスクのレベルを表しており、金融計画にとって不可欠な指標である。
本研究では,S&P 500のボラティリティ予測の精度向上方法として,過去のボラティリティパターンを捉えることで知られる確立されたGARCHモデル,過去のボラティリティとログリターンを利用するLSTMネットワーク,両アプローチの強みを組み合わせたハイブリッドLSTM-GARCHモデル,市場センチメントを測るVIX指数に影響を及ぼすハイブリッドモデルの先進バージョンについて検討する。
この分析は、2000年1月3日から2023年12月21日までの期間をカバーするS&P 500とVIXインデックスデータを含む毎日のデータセットに基づいている。
厳密なテストと比較により、機械学習アプローチ、特にハイブリッドLSTMモデルは、従来のGARCHモデルよりも大幅に優れていることがわかった。
VIX指数をハイブリッドモデルに含めれば、リアルタイム市場感情を取り入れることで予測能力がさらに向上する。
本研究の結果は、より正確なボラティリティ予測を達成するための貴重な洞察を与え、S&P500のボラティリティ環境におけるリスク管理と戦略的投資決定を向上する。
関連論文リスト
- Comparative Analysis of LSTM, GRU, and Transformer Models for Stock Price Prediction [0.9217021281095907]
本稿では、AIによる株価トレンド予測を中核研究とする。
2015年から2024年にかけて、有名なTesla車のモデルトレーニングデータセットを作成し、LSTM、GRU、Transformer Modelsと比較した。
その結果,LSTMモデルの精度は94%であった。
論文 参考訳(メタデータ) (2024-10-20T14:00:58Z) - Enhanced forecasting of stock prices based on variational mode decomposition, PatchTST, and adaptive scale-weighted layer [1.9635048365486127]
本研究では、変分モード分解(VMD)、PatchTST、適応スケール重み付け層(ASWL)を統合した新しい複合予測フレームワークを提案する。
VMD-PatchTST-ASWLフレームワークは従来のモデルに比べて予測精度が大幅に向上している。
この革新的なアプローチは、さまざまな財務分析や投資決定の文脈における潜在的な応用を含む、株価指数の価格予測のための強力なツールを提供する。
論文 参考訳(メタデータ) (2024-08-29T17:00:47Z) - An Evaluation of Deep Learning Models for Stock Market Trend Prediction [0.3277163122167433]
本研究では,S&P 500指数とブラジルETF EWZの日時閉値を用いた短期トレンド予測のための先進的なディープラーニングモデルの有効性について検討した。
時系列予測に最適化されたxLSTM適応であるxLSTM-TSモデルを導入する。
テストされたモデルの中で、xLSTM-TSは一貫して他のモデルよりも優れており、例えば、テスト精度72.82%、F1スコア73.16%をEWZの日次データセットで達成している。
論文 参考訳(メタデータ) (2024-08-22T13:58:55Z) - Combining Deep Learning and GARCH Models for Financial Volatility and
Risk Forecasting [0.0]
我々は,一般的な計量的GARCH時系列モデルとディープラーニングニューラルネットワークを組み合わせることで,金融商品のボラティリティとリスクを予測するハイブリッドアプローチを開発した。
一方,GARCHは標準GARCH,EGARCH,GJR-GARCH,APARCHの4つの仕様が採用されている。
モデルは、S&P500指数の日替わりの対数リターンと、金価格のBitcoin価格でテストされる。
論文 参考訳(メタデータ) (2023-10-02T10:18:13Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - HireVAE: An Online and Adaptive Factor Model Based on Hierarchical and
Regime-Switch VAE [113.47287249524008]
オンラインで適応的な環境で株価予測を行うファクターモデルを構築することは、依然としてオープンな疑問である。
本稿では,オンラインおよび適応型要素モデルであるHireVAEを,市場状況とストックワイド潜在要因の関係を埋め込んだ階層型潜在空間として提案する。
4つの一般的な実市場ベンチマークにおいて、提案されたHireVAEは、以前の手法よりもアクティブリターンの点で優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2023-06-05T12:58:13Z) - DeepVol: Volatility Forecasting from High-Frequency Data with Dilated Causal Convolutions [53.37679435230207]
本稿では,Dilated Causal Convolutionsに基づくDeepVolモデルを提案する。
実験結果から,提案手法は高頻度データからグローバルな特徴を効果的に学習できることが示唆された。
論文 参考訳(メタデータ) (2022-09-23T16:13:47Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
伝統的な時系列計量法は、価格力学を駆動する多層相互作用の真の複雑さを捉えることができないことが多い。
最先端の2次最適化アルゴリズムを採用することで、時間的注意を払ってベイジアン双線形ニューラルネットワークを訓練する。
予測分布を用いて推定パラメータとモデル予測に関連する誤差や不確実性を解析することにより、ベイズモデルと従来のML代替品を徹底的に比較する。
論文 参考訳(メタデータ) (2022-03-07T18:59:54Z) - Deep Stochastic Volatility Model [3.3970049571884204]
本論文では, 深部潜在変数モデルの枠組みに基づく深部ボラティリティモデル(DSVM)を提案する。
フレキシブルなディープラーニングモデルを使用して、過去のリターンに対する将来のボラティリティの依存性を自動的に検出する。
実データ分析では、DSVMはいくつかの一般的な代替ボラティリティモデルよりも優れています。
論文 参考訳(メタデータ) (2021-02-25T03:25:33Z) - A Sentiment Analysis Approach to the Prediction of Market Volatility [62.997667081978825]
金融ニュースとツイートから抽出された感情とFTSE100の動きの関係を調べました。
ニュース見出しから得られた感情は、市場のリターンを予測するシグナルとして使われる可能性があるが、ボラティリティには当てはまらない。
我々は,新たな情報の到着に応じて,市場の変動を予測するための正確な分類器を開発した。
論文 参考訳(メタデータ) (2020-12-10T01:15:48Z) - Stock2Vec: A Hybrid Deep Learning Framework for Stock Market Prediction
with Representation Learning and Temporal Convolutional Network [71.25144476293507]
我々は、株式市場の日々の価格を予測するためのグローバルなハイブリッドディープラーニングフレームワークを開発することを提案した。
表現学習によって、私たちはStock2Vecという埋め込みを導きました。
我々のハイブリッドフレームワークは、両方の利点を統合し、いくつかの人気のあるベンチマークモデルよりも、株価予測タスクにおいてより良いパフォーマンスを達成する。
論文 参考訳(メタデータ) (2020-09-29T22:54:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。