論文の概要: Predicting Risk-adjusted Returns using an Asset Independent
Regime-switching Model
- arxiv url: http://arxiv.org/abs/2107.05535v1
- Date: Wed, 7 Jul 2021 10:23:59 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-18 12:26:26.554385
- Title: Predicting Risk-adjusted Returns using an Asset Independent
Regime-switching Model
- Title(参考訳): アセット独立レジームスイッチングモデルによるリスク調整リターン予測
- Authors: Nicklas Werge
- Abstract要約: 隠れマルコフモデルに基づくリスク調整されたリターン予測のために,アセットクラスに依存しないレギュラースイッチングモデルを構築した。
約20年間の日次金融市場の変化を分析し,リスク調整リターン予測の指標について検討した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Financial markets tend to switch between various market regimes over time,
making stationarity-based models unsustainable. We construct a regime-switching
model independent of asset classes for risk-adjusted return predictions based
on hidden Markov models. This framework can distinguish between market regimes
in a wide range of financial markets such as the commodity, currency, stock,
and fixed income market. The proposed method employs sticky features that
directly affect the regime stickiness and thereby changing turnover levels. An
investigation of our metric for risk-adjusted return predictions is conducted
by analyzing daily financial market changes for almost twenty years. Empirical
demonstrations of out-of-sample observations obtain an accurate detection of
bull, bear, and high volatility periods, improving risk-adjusted returns while
keeping a preferable turnover level.
- Abstract(参考訳): 金融市場は時間とともに様々な市場体制を切り替える傾向にあり、定常性に基づくモデルは持続不可能である。
隠れマルコフモデルに基づくリスク調整リターン予測のために,アセットクラスに依存しないレジームスイッチングモデルを構築する。
この枠組みは、商品、通貨、株式、固定所得市場といった幅広い金融市場の市場体制を区別することができる。
提案手法では, 定常張力に直接影響し, 転倒レベルを変化させる粘着特性を用いる。
約20年間の日次金融市場の変化を分析し,リスク調整リターン予測の指標について検討した。
サンプル外観測の実証実験は、雄牛、クマ、高ボラティリティ期間を正確に検出し、望ましいターンオーバーレベルを維持しながら、リスク調整されたリターンを改善する。
関連論文リスト
- Stockformer: A Price-Volume Factor Stock Selection Model Based on Wavelet Transform and Multi-Task Self-Attention Networks [3.7608255115473592]
本稿では,ウェーブレット変換とマルチタスク自己アテンションネットワークを統合した価格-体積係数ストックセレクションモデルであるStockformerを紹介する。
ストックフォーマーは、株価のリターンを高頻度と低頻度に分解し、長期市場の動向と急激な出来事を注意深く捉えている。
実験結果から、Stockformerは複数の実市場データセットにおいて、既存の先進的な手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-11-23T04:33:47Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - HireVAE: An Online and Adaptive Factor Model Based on Hierarchical and
Regime-Switch VAE [113.47287249524008]
オンラインで適応的な環境で株価予測を行うファクターモデルを構築することは、依然としてオープンな疑問である。
本稿では,オンラインおよび適応型要素モデルであるHireVAEを,市場状況とストックワイド潜在要因の関係を埋め込んだ階層型潜在空間として提案する。
4つの一般的な実市場ベンチマークにおいて、提案されたHireVAEは、以前の手法よりもアクティブリターンの点で優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2023-06-05T12:58:13Z) - Regime-based Implied Stochastic Volatility Model for Crypto Option
Pricing [0.0]
既存の手法は、新興デジタルアセット(DA)の揮発性の性質に対処できない
インプリッドボラティリティモデル(ISVM)による市場システム(MR)クラスタリングの最近の進歩を活用する。
ISVMは、インプリートボラティリティ(IV)データを使用することで、各感情駆動期間に投資家の期待を組み込むことができる。
MR-ISVMは,オプション価格モデルの高次特性におけるジャンプへの複雑な適応の負担を克服するために有効であることを示す。
論文 参考訳(メタデータ) (2022-08-15T15:31:42Z) - CTMSTOU driven markets: simulated environment for regime-awareness in
trading policies [0.0]
本稿では,市場参加者が認識する基本的な価値をモデル化する新たなプロセスを紹介する。
我々は、取引業者に対する体制意識の概念を定義し、注文実行問題の文脈における異なる注文配置戦略の研究を通して、その重要性を説明する。
論文 参考訳(メタデータ) (2022-02-02T10:27:12Z) - Multi-Asset Spot and Option Market Simulation [52.77024349608834]
正規化フローに基づく1つの基盤となる1つのマーケットシミュレータを現実的に構築する。
本研究では, 正規化流れの条件付き可逆性を活用し, 独立シミュレータの連立分布をキャリブレーションするスケーラブルな手法を提案する。
論文 参考訳(メタデータ) (2021-12-13T17:34:28Z) - Stock Price Prediction Under Anomalous Circumstances [81.37657557441649]
本稿では,異常な状況下での株価の変動パターンを捉えることを目的とする。
ARIMAとLSTMのモデルは、シングルストックレベル、業界レベル、一般市場レベルでトレーニングします。
2016年から2020年にかけての100社の株価に基づいて、平均予測精度は98%に達した。
論文 参考訳(メタデータ) (2021-09-14T18:50:38Z) - Deep Stochastic Volatility Model [3.3970049571884204]
本論文では, 深部潜在変数モデルの枠組みに基づく深部ボラティリティモデル(DSVM)を提案する。
フレキシブルなディープラーニングモデルを使用して、過去のリターンに対する将来のボラティリティの依存性を自動的に検出する。
実データ分析では、DSVMはいくつかの一般的な代替ボラティリティモデルよりも優れています。
論文 参考訳(メタデータ) (2021-02-25T03:25:33Z) - A Sentiment Analysis Approach to the Prediction of Market Volatility [62.997667081978825]
金融ニュースとツイートから抽出された感情とFTSE100の動きの関係を調べました。
ニュース見出しから得られた感情は、市場のリターンを予測するシグナルとして使われる可能性があるが、ボラティリティには当てはまらない。
我々は,新たな情報の到着に応じて,市場の変動を予測するための正確な分類器を開発した。
論文 参考訳(メタデータ) (2020-12-10T01:15:48Z) - Predictive intraday correlations in stable and volatile market
environments: Evidence from deep learning [2.741266294612776]
我々は、S&P500株間のラタグ相関を学習・活用するためにディープラーニングを適用し、安定市場と不安定市場のモデル行動を比較する。
以上の結果から,アキュラシーは有意でありながら,予測地平線が短いほど低下することが示唆された。
ポートフォリオマネージャのための調査ツールとしての現代金融理論と作業の適用性について論じる。
論文 参考訳(メタデータ) (2020-02-24T17:19:54Z) - Gaussian process imputation of multiple financial series [71.08576457371433]
金融指標、株価、為替レートなどの複数の時系列は、市場が潜んでいる状態に依存しているため、強く結びついている。
金融時系列間の関係を多出力ガウスプロセスでモデル化することで学習することに注力する。
論文 参考訳(メタデータ) (2020-02-11T19:18:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。