The Hybrid Forecast of S&P 500 Volatility ensembled from VIX, GARCH and LSTM models
- URL: http://arxiv.org/abs/2407.16780v1
- Date: Tue, 23 Jul 2024 18:28:16 GMT
- Title: The Hybrid Forecast of S&P 500 Volatility ensembled from VIX, GARCH and LSTM models
- Authors: Natalia Roszyk, Robert Ćlepaczuk,
- Abstract summary: This study explores four methods to improve the accuracy of volatility forecasts for the S&P 500.
We find that machine learning approaches, particularly the hybrid LSTM models, significantly outperform the traditional GARCH model.
The results of this study offer valuable insights for achieving more accurate volatility predictions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Predicting the S&P 500 index volatility is crucial for investors and financial analysts as it helps assess market risk and make informed investment decisions. Volatility represents the level of uncertainty or risk related to the size of changes in a security's value, making it an essential indicator for financial planning. This study explores four methods to improve the accuracy of volatility forecasts for the S&P 500: the established GARCH model, known for capturing historical volatility patterns; an LSTM network that utilizes past volatility and log returns; a hybrid LSTM-GARCH model that combines the strengths of both approaches; and an advanced version of the hybrid model that also factors in the VIX index to gauge market sentiment. This analysis is based on a daily dataset that includes S&P 500 and VIX index data, covering the period from January 3, 2000, to December 21, 2023. Through rigorous testing and comparison, we found that machine learning approaches, particularly the hybrid LSTM models, significantly outperform the traditional GARCH model. Including the VIX index in the hybrid model further enhances its forecasting ability by incorporating real-time market sentiment. The results of this study offer valuable insights for achieving more accurate volatility predictions, enabling better risk management and strategic investment decisions in the volatile environment of the S&P 500.
Related papers
- Enhanced forecasting of stock prices based on variational mode decomposition, PatchTST, and adaptive scale-weighted layer [1.9635048365486127]
This study introduces a novel composite forecasting framework that integrates variational mode decomposition (VMD), PatchTST, and adaptive scale-weighted layer (ASWL)
The VMD-PatchTST-ASWL framework demonstrates significant improvements in forecasting accuracy compared to traditional models.
This innovative approach provides a powerful tool for stock index price forecasting, with potential applications in various financial analysis and investment decision-making contexts.
arXiv Detail & Related papers (2024-08-29T17:00:47Z) - An Evaluation of Deep Learning Models for Stock Market Trend Prediction [0.3277163122167433]
This study investigates the efficacy of advanced deep learning models for short-term trend forecasting using daily and hourly closing prices from the S&P 500 index and the Brazilian ETF EWZ.
We introduce the Extended Long Short-Term Memory for Time Series (xLSTM-TS) model, an xLSTM adaptation optimised for time series prediction.
Among the models tested, xLSTM-TS consistently outperformed others. For example, it achieved a test accuracy of 72.82% and an F1 score of 73.16% on the EWZ daily dataset.
arXiv Detail & Related papers (2024-08-22T13:58:55Z) - Gated recurrent neural network with TPE Bayesian optimization for enhancing stock index prediction accuracy [0.0]
The aim is to improve the prediction accuracy of the next day's closing price of the NIFTY 50 index, a prominent Indian stock market index.
A combination of eight influential factors is carefully chosen from fundamental stock data, technical indicators, crude oil price, and macroeconomic data to train the models.
arXiv Detail & Related papers (2024-06-02T06:39:01Z) - Combining Deep Learning and GARCH Models for Financial Volatility and
Risk Forecasting [0.0]
We develop a hybrid approach to forecasting the volatility and risk of financial instruments by combining common econometric GARCH time series models with deep learning neural networks.
For the latter, we employ Gated Recurrent Unit (GRU) networks, whereas four different specifications are used as the GARCH component: standard GARCH, EGARCH, GJR-GARCH and APARCH.
Models are tested using daily logarithmic returns on the S&P 500 index as well as gold price Bitcoin prices.
arXiv Detail & Related papers (2023-10-02T10:18:13Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - HireVAE: An Online and Adaptive Factor Model Based on Hierarchical and
Regime-Switch VAE [113.47287249524008]
It is still an open question to build a factor model that can conduct stock prediction in an online and adaptive setting.
We propose the first deep learning based online and adaptive factor model, HireVAE, at the core of which is a hierarchical latent space that embeds the relationship between the market situation and stock-wise latent factors.
Across four commonly used real stock market benchmarks, the proposed HireVAE demonstrate superior performance in terms of active returns over previous methods.
arXiv Detail & Related papers (2023-06-05T12:58:13Z) - DeepVol: Volatility Forecasting from High-Frequency Data with Dilated Causal Convolutions [53.37679435230207]
We propose DeepVol, a model based on Dilated Causal Convolutions that uses high-frequency data to forecast day-ahead volatility.
Our empirical results suggest that the proposed deep learning-based approach effectively learns global features from high-frequency data.
arXiv Detail & Related papers (2022-09-23T16:13:47Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - Deep Stochastic Volatility Model [3.3970049571884204]
We propose a deep volatility model (DSVM) based on the framework of deep latent variable models.
It uses flexible deep learning models to automatically detect the dependence of the future volatility on past returns.
In real data analysis, the DSVM outperforms several popular alternative volatility models.
arXiv Detail & Related papers (2021-02-25T03:25:33Z) - A Sentiment Analysis Approach to the Prediction of Market Volatility [62.997667081978825]
We have explored the relationship between sentiment extracted from financial news and tweets and FTSE100 movements.
The sentiment captured from news headlines could be used as a signal to predict market returns; the same does not apply for volatility.
We developed an accurate classifier for the prediction of market volatility in response to the arrival of new information.
arXiv Detail & Related papers (2020-12-10T01:15:48Z) - Stock2Vec: A Hybrid Deep Learning Framework for Stock Market Prediction
with Representation Learning and Temporal Convolutional Network [71.25144476293507]
We have proposed to develop a global hybrid deep learning framework to predict the daily prices in the stock market.
With representation learning, we derived an embedding called Stock2Vec, which gives us insight for the relationship among different stocks.
Our hybrid framework integrates both advantages and achieves better performance on the stock price prediction task than several popular benchmarked models.
arXiv Detail & Related papers (2020-09-29T22:54:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.