Quantum states of the Kapitza pendulum
- URL: http://arxiv.org/abs/2102.12711v1
- Date: Thu, 25 Feb 2021 07:22:13 GMT
- Title: Quantum states of the Kapitza pendulum
- Authors: P.A. Golovinski, V.A. Dubinkin
- Abstract summary: The quantum states of the Kapitza pendulum are described within the effective potential obtained by averaging over the fast oscillations.
An estimate of the energy spectrum stabilized of states is given using approximate model potential.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The quantum states of the Kapitza pendulum are described within the effective
potential obtained by the method of averaging over the fast oscillations. An
analytical estimate of the energy spectrum of stabilized states is given using
approximate model potential. For the lowest states of an inverted pendulum, the
spectrum is repeduced by the energies of a harmonic oscillator with
perturbation theory corrections. Tunneling effect contribution to the energies
of resonance states in the double-well effective potential is estimated. The
results of numerical simulations of vibrational and rotational spectra of the
Kapitza pendulum by the semiclassical method and by the Numerov algorithm are
compared.
Related papers
- Megastable quantization in generalized pilot-wave hydrodynamics [0.0]
A classical particle in a harmonic potential gives rise to a continuous energy spectra, whereas the corresponding quantum particle exhibits countably infinite quantized energy levels.
In recent years, classical non-Markovian wave-particle entities that materialize as walking droplets, have been shown to exhibit various hydrodynamic quantum analogs.
arXiv Detail & Related papers (2024-10-10T11:38:12Z) - Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - Quantum tunneling and level crossings in the squeeze-driven Kerr
oscillator [0.0]
We analyze the spectrum and the dynamics of the effective model up to high energies.
We argue that the level crossings and their consequences to the dynamics are typical to any quantum system with one degree of freedom.
arXiv Detail & Related papers (2023-05-17T18:00:05Z) - Quantum vibrational mode in a cavity confining a massless spinor field [91.3755431537592]
We analyse the reaction of a massless (1+1)-dimensional spinor field to the harmonic motion of one cavity wall.
We demonstrate that the system is able to convert bosons into fermion pairs at the lowest perturbative order.
arXiv Detail & Related papers (2022-09-12T08:21:12Z) - Oscillatory states of quantum Kapitza pendulum [4.4884981459499524]
We study quantum mechanics problem described by the Schr"odinger equation with Kapitza pendulum potential.
For the oscillatory states spatially localize around the two stable saddle positions of the potential, we obtain the perturbative eigenvalues and corresponding piecewise wavefunctions.
arXiv Detail & Related papers (2022-08-04T06:34:58Z) - Dynamics of Transmon Ionization [94.70553167084388]
We numerically explore the dynamics of a driven transmon-resonator system under strong and nearly resonant measurement drives.
We find clear signatures of transmon ionization where the qubit escapes out of its cosine potential.
arXiv Detail & Related papers (2022-03-21T18:00:15Z) - Fano Resonances in Quantum Transport with Vibrations [50.591267188664666]
Quantum mechanical scattering continuum states coupled to a scatterer with a discrete spectrum gives rise to Fano resonances.
We consider scatterers that possess internal vibrational degrees of freedom in addition to discrete states.
arXiv Detail & Related papers (2021-08-07T12:13:59Z) - Localized vibrational modes in waveguide quantum optomechanics with
spontaneously broken PT symmetry [117.44028458220427]
We study theoretically two vibrating quantum emitters trapped near a one-dimensional waveguide and interacting with propagating photons.
In the regime of strong optomechanical interaction the light-induced coupling of emitter vibrations can lead to formation of spatially localized vibration modes, exhibiting parity-time symmetry breaking.
arXiv Detail & Related papers (2021-06-29T12:45:44Z) - Quantum coherence, correlations and nonclassical states in the two-qubit
Rabi model with parametric oscillator [0.0]
Quantum coherence and quantum correlations are studied in a strongly interacting system composed of two qubits and a parametric medium.
We employ the adiabatic approximation approach to analytically solve the system.
The reconstructed states are observed to be nearly pure generalized Bell states.
arXiv Detail & Related papers (2021-06-12T11:16:40Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Coherent states of parametric oscillators in the probability
representation of quantum mechanics [0.0]
The possibility to describe quantum states by tomographic probability distributions (tomograms) is presented.
The integrals of motion linear in the position and momentum are used to explicitly obtain the tomogram evolution.
arXiv Detail & Related papers (2020-03-01T12:10:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.