Logical-qubit operations in an error-detecting surface code
- URL: http://arxiv.org/abs/2102.13071v1
- Date: Thu, 25 Feb 2021 18:40:02 GMT
- Title: Logical-qubit operations in an error-detecting surface code
- Authors: J. F. Marques, B. M. Varbanov, M. S. Moreira, H. Ali, N.
Muthusubramanian, C. Zachariadis, F. Battistel, M. Beekman, N. Haider, W.
Vlothuizen, A. Bruno, B. M. Terhal, and L. DiCarlo
- Abstract summary: We realize a suite of logical operations on a distance-two logical qubit stabilized using repeated error detection cycles.
For each type of operation, we observe higher performance for fault-tolerant variants over non-fault-tolerant variants.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We realize a suite of logical operations on a distance-two logical qubit
stabilized using repeated error detection cycles. Logical operations include
initialization into arbitrary states, measurement in the cardinal bases of the
Bloch sphere, and a universal set of single-qubit gates. For each type of
operation, we observe higher performance for fault-tolerant variants over
non-fault-tolerant variants, and quantify the difference through detailed
characterization. In particular, we demonstrate process tomography of logical
gates, using the notion of a logical Pauli transfer matrix. This integration of
high-fidelity logical operations with a scalable scheme for repeated
stabilization is a milestone on the road to quantum error correction with
higher-distance superconducting surface codes.
Related papers
- Geometric structure and transversal logic of quantum Reed-Muller codes [51.11215560140181]
In this paper, we aim to characterize the gates of quantum Reed-Muller (RM) codes by exploiting the well-studied properties of their classical counterparts.
A set of stabilizer generators for a RM code can be described via $X$ and $Z$ operators acting on subcubes of particular dimensions.
arXiv Detail & Related papers (2024-10-10T04:07:24Z) - Algorithmic Fault Tolerance for Fast Quantum Computing [37.448838730002905]
We show that fault-tolerant logical operations can be performed with constant time overhead for a broad class of quantum codes.
We prove that the deviation from the ideal measurement result distribution can be made exponentially small in the code distance.
Our work sheds new light on the theory of fault tolerance, potentially reducing the space-time cost of practical fault-tolerant quantum computation by orders of magnitude.
arXiv Detail & Related papers (2024-06-25T15:43:25Z) - Characterization of errors in a CNOT between surface code patches [0.0]
We investigate a lattice-surgery-based CNOT operation between two surface code patches.
We fully characterize the two-qubit logical error channel of the lattice-surgery-based CNOT.
arXiv Detail & Related papers (2024-05-08T18:11:21Z) - Toward Constructing a Continuous Logical Operator for Error-Corrected
Quantum Sensing [0.0]
Operations on logical qubits are only performed through universal gate sets consisting of finite-sized gates such as Clifford+T.
The Eastin-Knill theorem prevents a continuous signal from being both fault tolerant to local errors and transverse.
A protocol to design continuous logical z-rotations is proposed and applied to the Steane Code.
arXiv Detail & Related papers (2023-04-30T18:22:34Z) - Transversal Injection: A method for direct encoding of ancilla states
for non-Clifford gates using stabiliser codes [55.90903601048249]
We introduce a protocol to potentially reduce this overhead for non-Clifford gates.
Preliminary results hint at high quality fidelities at larger distances.
arXiv Detail & Related papers (2022-11-18T06:03:10Z) - Logical blocks for fault-tolerant topological quantum computation [55.41644538483948]
We present a framework for universal fault-tolerant logic motivated by the need for platform-independent logical gate definitions.
We explore novel schemes for universal logic that improve resource overheads.
Motivated by the favorable logical error rates for boundaryless computation, we introduce a novel computational scheme.
arXiv Detail & Related papers (2021-12-22T19:00:03Z) - Finding the disjointness of stabilizer codes is NP-complete [77.34726150561087]
We show that the problem of calculating the $c-disjointness, or even approximating it to within a constant multiplicative factor, is NP-complete.
We provide bounds on the disjointness for various code families, including the CSS codes,$d codes and hypergraph codes.
Our results indicate that finding fault-tolerant logical gates for generic quantum error-correcting codes is a computationally challenging task.
arXiv Detail & Related papers (2021-08-10T15:00:20Z) - Relaxation times do not capture logical qubit dynamics [50.04886706729045]
We show that spatial noise correlations can give rise to rich and counter-intuitive dynamical behavior of logical qubits.
This work will help to guide and benchmark experimental implementations of logical qubits.
arXiv Detail & Related papers (2020-12-14T19:51:19Z) - Local gradient optimization of leakage-suppressing entangling sequences [0.0]
We use a gradient-based optimization scheme to find single-qubit rotations to be interwoven between timesteps of a noisy logical two-qubit entangling gate.
We show how the sequence fidelity is affected by imperfections in the single-qubit operations, as well as by various relative strengths of the logical and leakage noise.
arXiv Detail & Related papers (2020-07-17T14:17:26Z) - Entangling logical qubits with lattice surgery [47.037230560588604]
We show the experimental realization of lattice surgery between two topologically encoded qubits in a 10-qubit ion trap quantum information processor.
In particular, we demonstrate entanglement between two logical qubits and we implement logical state teleportation.
arXiv Detail & Related papers (2020-06-04T18:00:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.