Characterization of errors in a CNOT between surface code patches
- URL: http://arxiv.org/abs/2405.05337v2
- Date: Tue, 21 May 2024 09:36:48 GMT
- Title: Characterization of errors in a CNOT between surface code patches
- Authors: Bálint Domokos, Áron Márton, János K. Asbóth,
- Abstract summary: We investigate a lattice-surgery-based CNOT operation between two surface code patches.
We fully characterize the two-qubit logical error channel of the lattice-surgery-based CNOT.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As current experiments already realize small quantum circuits on error corrected qubits, it is important to fully understand the effect of physical errors on the logical error channels of these fault-tolerant circuits. Here, we investigate a lattice-surgery-based CNOT operation between two surface code patches under phenomenological error models. (i) For two-qubit logical Pauli measurements -- the elementary building block of the CNOT -- we optimize the number of stabilizer measurement rounds, usually taken equal to $d$, the size (code distance) of each patch. We find that the optimal number can be greater or smaller than $d$, depending on the rate of physical and readout errors, and the separation between the code patches. (ii) We fully characterize the two-qubit logical error channel of the lattice-surgery-based CNOT. We find a symmetry of the CNOT protocol, that results in a symmetry of the logical error channel. We also find that correlations between X and Z errors on the logical level are suppressed under minimum weight decoding.
Related papers
- An iterative transversal CNOT decoder [0.3270311586730471]
Modern platforms for qubit candidates, such as trapped ions or neutral atoms, allow long range connectivity between distant physical qubits through shuttling.
This opens up an avenue for iterative logical CNOT gates between distant logical qubits, whereby physical CNOT gates are performed between each corresponding physical qubit on the control and target logical qubits.
However, the CNOT can propagate errors from one logical qubit to another, leading to correlated errors between logical qubits.
We have developed a multi-pass decoder that decodes each logical qubit separately to deal with this correlated error.
arXiv Detail & Related papers (2024-07-30T17:10:10Z) - Algorithmic Fault Tolerance for Fast Quantum Computing [37.448838730002905]
We show that fault-tolerant logical operations can be performed with constant time overhead for a broad class of quantum codes.
We prove that the deviation from the ideal measurement result distribution can be made exponentially small in the code distance.
Our work sheds new light on the theory of fault tolerance, potentially reducing the space-time cost of practical fault-tolerant quantum computation by orders of magnitude.
arXiv Detail & Related papers (2024-06-25T15:43:25Z) - Fault-tolerant quantum computation using large spin cat-codes [0.8640652806228457]
We construct a fault-tolerant quantum error-correcting protocol based on a qubit encoded in a large spin qudit using a spin-cat code.
We show how to generate a universal gate set, including the rank-preserving CNOT gate, using quantum control and the Rydberg blockade.
These findings pave the way for encoding a qubit in a large spin with the potential to achieve fault tolerance, high threshold, and reduced resource overhead in quantum information processing.
arXiv Detail & Related papers (2024-01-08T22:56:05Z) - Coherent errors and readout errors in the surface code [0.0]
We consider the combined effect of readout errors and coherent errors on the surface code.
We find a threshold for this combination of errors, with an error rate close to the threshold of the corresponding incoherent error channel.
arXiv Detail & Related papers (2023-03-08T15:50:44Z) - Suppressing quantum errors by scaling a surface code logical qubit [147.2624260358795]
We report the measurement of logical qubit performance scaling across multiple code sizes.
Our system of superconducting qubits has sufficient performance to overcome the additional errors from increasing qubit number.
Results mark the first experimental demonstration where quantum error correction begins to improve performance with increasing qubit number.
arXiv Detail & Related papers (2022-07-13T18:00:02Z) - Measuring NISQ Gate-Based Qubit Stability Using a 1+1 Field Theory and
Cycle Benchmarking [50.8020641352841]
We study coherent errors on a quantum hardware platform using a transverse field Ising model Hamiltonian as a sample user application.
We identify inter-day and intra-day qubit calibration drift and the impacts of quantum circuit placement on groups of qubits in different physical locations on the processor.
This paper also discusses how these measurements can provide a better understanding of these types of errors and how they may improve efforts to validate the accuracy of quantum computations.
arXiv Detail & Related papers (2022-01-08T23:12:55Z) - Surface Code Design for Asymmetric Error Channels [55.41644538483948]
We introduce a surface code design based on the fact that bit flip and phase flip errors in quantum systems are asymmetric.
We show that, compared to symmetric surface codes, our asymmetric surface codes can provide almost double the pseudo-threshold rates.
As the asymmetry of the surface code increases, the advantage in the pseudo-threshold rates begins to saturate for any degree of asymmetry in the channel.
arXiv Detail & Related papers (2021-11-02T10:41:02Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
We analyze the error-correction capabilities of rotation-symmetric codes using a teleportation-based error-correction circuit.
We find that with the currently achievable measurement efficiencies in microwave optics, bosonic rotation codes undergo a substantial decrease in their break-even potential.
arXiv Detail & Related papers (2021-08-02T16:12:13Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
We experimentally demonstrate a fault-tolerant weight-4 parity check measurement scheme.
We achieve a flag-conditioned parity measurement single-shot fidelity of 93.2(2)%.
The scheme is an essential building block in a broad class of stabilizer quantum error correction protocols.
arXiv Detail & Related papers (2021-07-13T20:08:04Z) - Exponential suppression of bit or phase flip errors with repetitive
error correction [56.362599585843085]
State-of-the-art quantum platforms typically have physical error rates near $10-3$.
Quantum error correction (QEC) promises to bridge this divide by distributing quantum logical information across many physical qubits.
We implement 1D repetition codes embedded in a 2D grid of superconducting qubits which demonstrate exponential suppression of bit or phase-flip errors.
arXiv Detail & Related papers (2021-02-11T17:11:20Z) - Optimization of the surface code design for Majorana-based qubits [2.309914459672557]
The surface code is a prominent topological error-correcting code exhibiting high fault-tolerance accuracy thresholds.
Here, we present error-correction schemes using $textitonly$ Pauli measurements on single qubits and on pairs of nearest-neighbor qubits.
arXiv Detail & Related papers (2020-07-01T08:01:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.