論文の概要: Efficient and Interpretable Robot Manipulation with Graph Neural
Networks
- arxiv url: http://arxiv.org/abs/2102.13177v1
- Date: Thu, 25 Feb 2021 21:09:12 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-01 13:45:51.360174
- Title: Efficient and Interpretable Robot Manipulation with Graph Neural
Networks
- Title(参考訳): グラフニューラルネットワークを用いた効率的かつ解釈可能なロボット操作
- Authors: Yixin Lin, Austin S. Wang, Akshara Rai
- Abstract要約: グラフニューラルネットワーク(GNN)を用いて、グラフ上の操作として操作タスクを表現する。
我々の定式化はまず環境をグラフ表現に変換し、次に訓練されたgnnポリシーを適用してどのオブジェクトを操作するかを予測する。
私たちのgnnポリシーは、単純なタスクの専門的なデモンストレーションを使用してトレーニングされ、環境内のオブジェクトの数と構成を一般化しています。
本稿では,学習したGNNポリシがシミュレーションと実ハードウェアの両方で様々なブロックタッキングタスクを解くことができることを示す実験を提案する。
- 参考スコア(独自算出の注目度): 7.799182201815763
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many manipulation tasks can be naturally cast as a sequence of spatial
relationships and constraints between objects. We aim to discover and scale
these task-specific spatial relationships by representing manipulation tasks as
operations over graphs. To do this, we pose manipulating a large, variable
number of objects as a probabilistic classification problem over actions,
objects and goals, learned using graph neural networks (GNNs). Our formulation
first transforms the environment into a graph representation, then applies a
trained GNN policy to predict which object to manipulate towards which goal
state. Our GNN policies are trained using very few expert demonstrations on
simple tasks, and exhibits generalization over number and configurations of
objects in the environment and even to new, more complex tasks, and provide
interpretable explanations for their decision-making. We present experiments
which show that a single learned GNN policy can solve a variety of
blockstacking tasks in both simulation and real hardware.
- Abstract(参考訳): 多くの操作タスクは、自然にオブジェクト間の空間的関係と制約の列としてキャストできる。
操作タスクをグラフ上の操作として表現することで、これらのタスク固有の空間関係の発見と拡大を目指します。
そこで我々は,グラフニューラルネットワーク(GNN)を用いて学習した行動,対象,目標に対する確率的分類問題として,多変数オブジェクトの操作を行う。
我々の定式化はまず環境をグラフ表現に変換し、次に訓練されたgnnポリシーを適用してどのオブジェクトを操作するかを予測する。
私たちのgnnポリシーは、単純なタスクの専門的なデモンストレーションを使用してトレーニングされ、環境内のオブジェクトの数や構成、さらには新しくて複雑なタスクへの一般化を示し、意思決定のための解釈可能な説明を提供します。
本稿では,学習したGNNポリシがシミュレーションと実ハードウェアの両方で様々なブロックタッキングタスクを解くことができることを示す実験を提案する。
関連論文リスト
- MATCH POLICY: A Simple Pipeline from Point Cloud Registration to Manipulation Policies [25.512068008948603]
MATCH POLICYは、高精度なピックと配置タスクを解決するパイプラインである。
アクション推論をポイントクラウド登録タスクに転送する。
非常に高いサンプル効率と、目に見えない構成への一般化性を実現する。
論文 参考訳(メタデータ) (2024-09-23T20:09:43Z) - Can Graph Learning Improve Planning in LLM-based Agents? [61.47027387839096]
言語エージェントにおけるタスクプランニングは、大規模言語モデル(LLM)の開発とともに重要な研究トピックとして浮上している。
本稿では,課題計画のためのグラフ学習に基づく手法について検討する。
我々のグラフ学習への関心は、注意のバイアスと自己回帰的損失が、グラフ上の意思決定を効果的にナビゲートするLLMの能力を妨げているという理論的な発見に起因している。
論文 参考訳(メタデータ) (2024-05-29T14:26:24Z) - Deep Reinforcement Learning Based on Local GNN for Goal-conditioned
Deformable Object Rearranging [1.807492010338763]
オブジェクトの再配置は、ロボットが変形可能なオブジェクトを目標設定に再構成する必要がある、最も一般的な変形可能な操作タスクの1つである。
従来の研究は、モデルベースまたはデータ駆動アプローチによる各タスクのエキスパートシステムの設計に重点を置いていた。
画像から検出されたキーポイントを2つの表現グラフを用いて符号化する局所GNN(Graph Neural Network)に基づく学習法を設計する。
我々のフレームワークはシミュレーションにおける複数の1-D(ロープリング、ロープリング)と2-D(クロース)の再構成作業に有効であり、キーポイント検出器を微調整することで、実際のロボットに容易に移行できる。
論文 参考訳(メタデータ) (2023-02-21T05:21:26Z) - Visual Transformer for Object Detection [0.0]
我々は、自己注意を識別的視覚的タスク、オブジェクト検出に用いて、畳み込みの代替として検討する。
我々のモデルは、多くの異なるモデルとスケールにわたるCOCOのオブジェクト検出において、一貫した改善をもたらす。
論文 参考訳(メタデータ) (2022-06-01T06:13:09Z) - Graph Representation Learning for Multi-Task Settings: a Meta-Learning
Approach [5.629161809575013]
メタ学習に基づくグラフ表現学習のための新しい学習戦略を提案する。
本手法は,複数タスクの同時実行学習において発生する問題を回避する。
我々は,本手法で訓練したモデルが生成した埋め込みを,単一タスクとマルチタスクの両エンドツーエンドモデルに匹敵する,あるいは驚くほど高いパフォーマンスで複数のタスクを実行できることを示す。
論文 参考訳(メタデータ) (2022-01-10T12:58:46Z) - SORNet: Spatial Object-Centric Representations for Sequential
Manipulation [39.88239245446054]
シーケンシャルな操作タスクでは、ロボットが環境の状態を認識し、望ましい目標状態につながる一連のアクションを計画する必要がある。
本研究では,対象対象の標準視に基づくRGB画像からオブジェクト中心表現を抽出するSORNetを提案する。
論文 参考訳(メタデータ) (2021-09-08T19:36:29Z) - RICE: Refining Instance Masks in Cluttered Environments with Graph
Neural Networks [53.15260967235835]
本稿では,インスタンスマスクのグラフベース表現を利用して,そのような手法の出力を改良する新しいフレームワークを提案する。
我々は、セグメンテーションにスマートな摂動をサンプリングできるディープネットワークと、オブジェクト間の関係をエンコード可能なグラフニューラルネットワークを訓練し、セグメンテーションを評価する。
本稿では,本手法によって生成された不確実性推定を用いてマニピュレータを誘導し,乱れたシーンを効率的に理解するアプリケーションについて紹介する。
論文 参考訳(メタデータ) (2021-06-29T20:29:29Z) - Large Scale Distributed Collaborative Unlabeled Motion Planning with
Graph Policy Gradients [122.85280150421175]
本研究では,運動制約と空間制約を多数のロボットに対して2次元空間で解くための学習法を提案する。
ロボットのポリシーをパラメータ化するためにグラフニューラルネットワーク(GNN)を用いる。
論文 参考訳(メタデータ) (2021-02-11T21:57:43Z) - Policy-GNN: Aggregation Optimization for Graph Neural Networks [60.50932472042379]
グラフニューラルネットワーク(GNN)は、局所的なグラフ構造をモデル化し、隣人からの情報を集約することで階層的なパターンを捉えることを目的としている。
複雑なグラフとスパースな特徴を与えられた各ノードに対して効果的なアグリゲーション戦略を開発することは難しい課題である。
本稿では,GNNのサンプリング手順とメッセージパッシングを複合学習プロセスにモデル化するメタ政治フレームワークであるPolicy-GNNを提案する。
論文 参考訳(メタデータ) (2020-06-26T17:03:06Z) - A Trainable Optimal Transport Embedding for Feature Aggregation and its
Relationship to Attention [96.77554122595578]
固定サイズのパラメータ化表現を導入し、与えられた入力セットから、そのセットとトレーニング可能な参照の間の最適な輸送計画に従って要素を埋め込み、集約する。
我々のアプローチは大規模なデータセットにスケールし、参照のエンドツーエンドのトレーニングを可能にすると同時に、計算コストの少ない単純な教師なし学習メカニズムも提供する。
論文 参考訳(メタデータ) (2020-06-22T08:35:58Z) - Evaluating Logical Generalization in Graph Neural Networks [59.70452462833374]
グラフニューラルネットワーク(GNN)を用いた論理一般化の課題について検討する。
ベンチマークスイートであるGraphLogでは、学習アルゴリズムが異なる合成論理でルール誘導を実行する必要がある。
モデルが一般化し適応する能力は、トレーニング中に遭遇する論理規則の多様性によって強く決定される。
論文 参考訳(メタデータ) (2020-03-14T05:45:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。