論文の概要: MATCH POLICY: A Simple Pipeline from Point Cloud Registration to Manipulation Policies
- arxiv url: http://arxiv.org/abs/2409.15517v1
- Date: Mon, 23 Sep 2024 20:09:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-26 12:47:38.637331
- Title: MATCH POLICY: A Simple Pipeline from Point Cloud Registration to Manipulation Policies
- Title(参考訳): MATCH POLICy: ポイントクラウド登録から操作ポリシへの簡単なパイプライン
- Authors: Haojie Huang, Haotian Liu, Dian Wang, Robin Walters, Robert Platt,
- Abstract要約: MATCH POLICYは、高精度なピックと配置タスクを解決するパイプラインである。
アクション推論をポイントクラウド登録タスクに転送する。
非常に高いサンプル効率と、目に見えない構成への一般化性を実現する。
- 参考スコア(独自算出の注目度): 25.512068008948603
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many manipulation tasks require the robot to rearrange objects relative to one another. Such tasks can be described as a sequence of relative poses between parts of a set of rigid bodies. In this work, we propose MATCH POLICY, a simple but novel pipeline for solving high-precision pick and place tasks. Instead of predicting actions directly, our method registers the pick and place targets to the stored demonstrations. This transfers action inference into a point cloud registration task and enables us to realize nontrivial manipulation policies without any training. MATCH POLICY is designed to solve high-precision tasks with a key-frame setting. By leveraging the geometric interaction and the symmetries of the task, it achieves extremely high sample efficiency and generalizability to unseen configurations. We demonstrate its state-of-the-art performance across various tasks on RLBench benchmark compared with several strong baselines and test it on a real robot with six tasks.
- Abstract(参考訳): 多くの操作タスクでは、ロボットは相対的に物体を並べ替える必要がある。
そのようなタスクは、剛体の集合の部分間の相対的なポーズの列として記述することができる。
本研究では,高精度ピック・アンド・プレイスタスクを解くための,単純だが斬新なパイプラインであるMATCH POLICYを提案する。
我々のメソッドは、アクションを直接予測する代わりに、格納されたデモにターゲットを選択し配置する。
これにより、アクション推論をポイントクラウド登録タスクに転送し、トレーニングなしで非自明な操作ポリシーを実現することができる。
MATCH POLICYは、キーフレーム設定で高精度なタスクを解決するように設計されている。
幾何学的相互作用とタスクの対称性を活用することにより、目に見えない構成に対して非常に高いサンプリング効率と一般化性を達成する。
我々はRLBenchベンチマークの様々なタスクにおける最先端のパフォーマンスを、いくつかの強力なベースラインと比較し、実際の6つのタスクを持つロボットでテストした。
関連論文リスト
- Imagination Policy: Using Generative Point Cloud Models for Learning Manipulation Policies [25.760946763103483]
Imagination Policy(Imagination Policy)は,高精度ピック・アンド・プレイス・タスクを解くための新しいマルチタスク・キー・フレーム・ポリシー・ネットワークである。
アクションを直接学習する代わりに、Imagination Policy は所望の状態を想像するために点雲を生成し、それが厳密なアクション推定を用いてアクションに変換される。
論文 参考訳(メタデータ) (2024-06-17T17:00:41Z) - GenCHiP: Generating Robot Policy Code for High-Precision and Contact-Rich Manipulation Tasks [28.556818911535498]
大規模言語モデル(LLM)はロボットポリシーコードの生成に成功しているが、今のところこれらの結果はハイレベルなタスクに限られている。
適切なアクション空間では、LLMは様々なコンタクトリッチかつ高精度な操作タスクのためのポリシーを生成することができる。
論文 参考訳(メタデータ) (2024-04-09T22:47:25Z) - Interactive Planning Using Large Language Models for Partially
Observable Robotics Tasks [54.60571399091711]
大きな言語モデル(LLM)は、オープン語彙タスクを実行するロボットエージェントを作成することで、驚くべき成果を上げている。
LLMを用いた部分的に観測可能なタスクのための対話型計画手法を提案する。
論文 参考訳(メタデータ) (2023-12-11T22:54:44Z) - TaskBench: Benchmarking Large Language Models for Task Automation [82.2932794189585]
タスク自動化における大規模言語モデル(LLM)の機能を評価するためのフレームワークであるTaskBenchを紹介する。
具体的には、タスクの分解、ツールの選択、パラメータ予測を評価する。
提案手法は, 自動構築と厳密な人的検証を組み合わせることで, 人的評価との整合性を確保する。
論文 参考訳(メタデータ) (2023-11-30T18:02:44Z) - Learning Extrinsic Dexterity with Parameterized Manipulation Primitives [8.7221770019454]
我々は、オブジェクトのポーズを変えるために環境を利用する一連のアクションを学習する。
我々のアプローチは、オブジェクトとグリップと環境の間の相互作用を利用してオブジェクトの状態を制御することができる。
拘束されたテーブルトップワークスペースから様々な重量,形状,摩擦特性の箱状物体を選別する手法の評価を行った。
論文 参考訳(メタデータ) (2023-10-26T21:28:23Z) - DiSparse: Disentangled Sparsification for Multitask Model Compression [92.84435347164435]
DiSparseは、シンプルで効果的で、第一級のマルチタスクプルーニングとスパーストレーニングスキームである。
実験の結果,様々な設定や設定において優れた性能を示した。
論文 参考訳(メタデータ) (2022-06-09T17:57:46Z) - Fast Inference and Transfer of Compositional Task Structures for
Few-shot Task Generalization [101.72755769194677]
本稿では,タスクがサブタスクグラフによって特徴づけられる,数発の強化学習問題として定式化する。
我々のマルチタスクサブタスクグラフ推論器(MTSGI)は、トレーニングタスクから、まず、サブタスクグラフの観点から、一般的なハイレベルなタスク構造を推測する。
提案手法は,2次元グリッドワールドおよび複雑なWebナビゲーション領域において,タスクの共通基盤構造を学習し,活用し,未知のタスクへの適応を高速化する。
論文 参考訳(メタデータ) (2022-05-25T10:44:25Z) - Learning Sensorimotor Primitives of Sequential Manipulation Tasks from
Visual Demonstrations [13.864448233719598]
本稿では,低レベルポリシーと高レベルポリシーを同時に学習するニューラルネットワークベースの新しいフレームワークについて述べる。
提案手法の重要な特徴は、これらのポリシーがタスクデモの生のビデオから直接学習されることである。
ロボットアームを用いた物体操作タスクの実証実験の結果,提案するネットワークは実際の視覚的な実演から効率よく学習し,タスクを実行することができることがわかった。
論文 参考訳(メタデータ) (2022-03-08T01:36:48Z) - Conditional Meta-Learning of Linear Representations [57.90025697492041]
表現学習のための標準メタラーニングは、複数のタスク間で共有される共通の表現を見つけることを目的とする。
本研究では,タスクの側情報を手作業に適した表現にマッピングし,条件付け関数を推定することで,この問題を克服する。
この利点を実用的に活用できるメタアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-30T12:02:14Z) - Efficient and Interpretable Robot Manipulation with Graph Neural
Networks [7.799182201815763]
グラフニューラルネットワーク(GNN)を用いて、グラフ上の操作として操作タスクを表現する。
我々の定式化はまず環境をグラフ表現に変換し、次に訓練されたgnnポリシーを適用してどのオブジェクトを操作するかを予測する。
私たちのgnnポリシーは、単純なタスクの専門的なデモンストレーションを使用してトレーニングされ、環境内のオブジェクトの数と構成を一般化しています。
本稿では,学習したGNNポリシがシミュレーションと実ハードウェアの両方で様々なブロックタッキングタスクを解くことができることを示す実験を提案する。
論文 参考訳(メタデータ) (2021-02-25T21:09:12Z) - Dynamic Multi-Robot Task Allocation under Uncertainty and Temporal
Constraints [52.58352707495122]
本稿では,不確実性およびマルチエージェント協調の下での逐次意思決定における重要な計算課題を分離するマルチロボット割当アルゴリズムを提案する。
都市におけるマルチアームコンベヤベルトピック・アンド・プレイスとマルチドローン配送ディスパッチの2つの異なる領域における広範囲なシミュレーション結果について検証を行った。
論文 参考訳(メタデータ) (2020-05-27T01:10:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。