Quantum Embedding Theory for Strongly-correlated States in Materials
- URL: http://arxiv.org/abs/2102.13178v1
- Date: Thu, 25 Feb 2021 21:13:56 GMT
- Title: Quantum Embedding Theory for Strongly-correlated States in Materials
- Authors: He Ma, Nan Sheng, Marco Govoni, Giulia Galli
- Abstract summary: We present a derivation of a quantum embedding theory based on the definition of effective Hamiltonians.
The effect of the environment on a chosen active space is accounted for through screened Coulomb interactions evaluated using density functional theory.
We generalize the quantum embedding theory to active spaces composed of orbitals that are not eigenstates of Kohn-Sham Hamiltonians.
- Score: 2.3398944692275476
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum embedding theories are promising approaches to investigate
strongly-correlated electronic states of active regions of large-scale
molecular or condensed systems. Notable examples are spin defects in
semiconductors and insulators. We present a detailed derivation of a quantum
embedding theory recently introduced, which is based on the definition of
effective Hamiltonians. The effect of the environment on a chosen active space
is accounted for through screened Coulomb interactions evaluated using density
functional theory. Importantly, the random phase approximation is not required
and the evaluation of virtual electronic orbitals is circumvented with
algorithms previously developed in the context of calculations based on
many-body perturbation theory. In addition, we generalize the quantum embedding
theory to active spaces composed of orbitals that are not eigenstates of
Kohn-Sham Hamiltonians. Finally, we report results for spin defects in
semiconductors.
Related papers
- Implementation and characterization of the dice lattice in the electron quantum simulator [0.0]
We study the experimental realization of the dice lattice with adjustable parameters.
The high mobility of Shockley state electrons enables an accurate theoretical description of the artificial lattice.
Our theoretical findings suggest that, owing to the exceptional electron mobility, the highly degenerate eigenenergy associated with the Aharonov-Bohm caging mechanism may not manifest in the proposed experiment.
arXiv Detail & Related papers (2024-03-09T23:27:19Z) - Observation of false vacuum decay via bubble formation in ferromagnetic
superfluids [47.187609203210705]
In quantum field theory, the decay of an extended metastable state into the real ground state is known as false vacuum decay''
Here, we observe bubble nucleation in isolated and highly controllable superfluid atomic systems.
arXiv Detail & Related papers (2023-05-09T07:41:08Z) - Aharonov-Bohm effect for confined matter in lattice gauge theories [0.0]
We study the dynamics of mesons residing in a ring-shaped lattice of mesoscopic size pierced by an effective magnetic field.
We find a new type of Aharonov-Bohm effect that goes beyond the particle-like effect and reflects the the features of the confining gauge potential.
arXiv Detail & Related papers (2023-04-25T10:51:42Z) - Light-shift induced behaviors observed in momentum-space quantum walks [47.187609203210705]
We present a theoretical model which proves that the coherent dynamics of the spinor condensate is sufficient to explain the experimental data.
Our numerical findings are supported by an analytical prediction for the momentum distributions in the limit of zero-temperature condensates.
arXiv Detail & Related papers (2022-05-16T14:50:05Z) - Realizing a 1D topological gauge theory in an optically dressed BEC [0.0]
Topological gauge theories describe the low-energy properties of strongly correlated quantum systems through effective weakly interacting models.
In traditional solid-state platforms such gauge theories are only convenient theoretical constructions.
We report the quantum simulation of a topological gauge theory by realizing a one-dimensional reduction of the Chern-Simons theory in a Bose-Einstein condensate.
arXiv Detail & Related papers (2022-04-11T19:38:44Z) - Spectral density reconstruction with Chebyshev polynomials [77.34726150561087]
We show how to perform controllable reconstructions of a finite energy resolution with rigorous error estimates.
This paves the way for future applications in nuclear and condensed matter physics.
arXiv Detail & Related papers (2021-10-05T15:16:13Z) - Relativistic density-functional theory based on effective quantum
electrodynamics [0.0]
A relativistic density-functional theory based on a Fock-space effective quantum-electrodynamics (QED) Hamiltonian is developed.
A Kohn-Sham scheme is formulated in a quite similar way to non-relativistic density-functional theory.
The usual no-pair Kohn-Sham scheme is obtained as a well-defined approximation to this relativistic density-functional theory.
arXiv Detail & Related papers (2021-02-20T22:43:08Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Theoretical methods for ultrastrong light-matter interactions [91.3755431537592]
This article reviews theoretical methods developed to understand cavity quantum electrodynamics in the ultrastrong-coupling regime.
The article gives a broad overview of the recent progress, ranging from analytical estimate of ground-state properties to proper computation of master equations.
Most of the article is devoted to effective models, relevant for the various experimental platforms in which the ultrastrong coupling has been reached.
arXiv Detail & Related papers (2020-01-23T18:09:10Z) - Quantum decoherence by Coulomb interaction [58.720142291102135]
We present an experimental study of the Coulomb-induced decoherence of free electrons in a superposition state in a biprism electron interferometer close to a semiconducting and metallic surface.
The results will enable the determination and minimization of specific decoherence channels in the design of novel quantum instruments.
arXiv Detail & Related papers (2020-01-17T04:11:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.