論文の概要: Consistent Sparse Deep Learning: Theory and Computation
- arxiv url: http://arxiv.org/abs/2102.13229v1
- Date: Thu, 25 Feb 2021 23:31:24 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-01 14:02:52.038474
- Title: Consistent Sparse Deep Learning: Theory and Computation
- Title(参考訳): 一貫性スパース深層学習:理論と計算
- Authors: Yan Sun, Qifan Song, Faming Liang
- Abstract要約: スパース深層学習ネットワーク(DNN)を学習するための頻繁な方法を提案する。
提案手法は大規模ネットワーク圧縮や高次元非線形変数選択に非常に有効である。
- 参考スコア(独自算出の注目度): 11.24471623055182
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning has been the engine powering many successes of data science.
However, the deep neural network (DNN), as the basic model of deep learning, is
often excessively over-parameterized, causing many difficulties in training,
prediction and interpretation. We propose a frequentist-like method for
learning sparse DNNs and justify its consistency under the Bayesian framework:
the proposed method could learn a sparse DNN with at most $O(n/\log(n))$
connections and nice theoretical guarantees such as posterior consistency,
variable selection consistency and asymptotically optimal generalization
bounds. In particular, we establish posterior consistency for the sparse DNN
with a mixture Gaussian prior, show that the structure of the sparse DNN can be
consistently determined using a Laplace approximation-based marginal posterior
inclusion probability approach, and use Bayesian evidence to elicit sparse DNNs
learned by an optimization method such as stochastic gradient descent in
multiple runs with different initializations. The proposed method is
computationally more efficient than standard Bayesian methods for large-scale
sparse DNNs. The numerical results indicate that the proposed method can
perform very well for large-scale network compression and high-dimensional
nonlinear variable selection, both advancing interpretable machine learning.
- Abstract(参考訳): ディープラーニングは、データサイエンスの多くの成功を支えるエンジンだ。
しかし、深層ニューラルネットワーク(DNN)は、深層学習の基本モデルとして、しばしば過剰にパラメータ化され、トレーニング、予測、解釈に多くの困難を引き起こします。
提案手法は,最大$O(n/\log(n))$接続を持つスパースDNNを学習し,後続の一貫性,変数選択の整合性,漸近的に最適な一般化境界などの理論的保証を与える。
特に,スパースDNNとガウス先行混合の後方整合性を確立し,ラプラス近似に基づく辺縁内包確率アプローチを用いてスパースDNNの構造を連続的に決定できることを示し,ベイズ証拠を用いて,確率勾配勾配のような最適化手法で学習したスパースDNNを,複数の初期化を伴う複数のランで抽出する。
提案手法は,大規模スパースDNNの標準ベイズ法よりも計算効率がよい。
提案手法は, 大規模ネットワーク圧縮と高次元非線形変数選択に非常に有効であり, 相互解釈可能な機械学習が進んでいることを示す。
関連論文リスト
- The Convex Landscape of Neural Networks: Characterizing Global Optima
and Stationary Points via Lasso Models [75.33431791218302]
ディープニューラルネットワーク(DNN)モデルは、プログラミング目的に使用される。
本稿では,凸型神経回復モデルについて検討する。
定常的非次元目的物はすべて,グローバルサブサンプリング型凸解法プログラムとして特徴付けられることを示す。
また, 静止非次元目的物はすべて, グローバルサブサンプリング型凸解法プログラムとして特徴付けられることを示す。
論文 参考訳(メタデータ) (2023-12-19T23:04:56Z) - A multiobjective continuation method to compute the regularization path of deep neural networks [1.3654846342364308]
数値効率を保証し、モデルの解釈性を改善し、堅牢性を向上させるため、ディープニューラルネットワーク(DNN)では、スパシティは高い特徴である。
本稿では,数百万のパラメータを持つ高次元勾配に対して,上述の目的に対するスパースフロント全体を極めて効率的な方法で実現するアルゴリズムを提案する。
正規化パスの知識がネットワークパラメトリゼーションを十分に一般化することを示す。
論文 参考訳(メタデータ) (2023-08-23T10:08:52Z) - Variational Linearized Laplace Approximation for Bayesian Deep Learning [11.22428369342346]
変分スパースガウス過程(GP)を用いた線形ラプラス近似(LLA)の近似法を提案する。
本手法はGPの2つのRKHSの定式化に基づいており、予測平均として元のDNNの出力を保持する。
効率のよい最適化が可能で、結果としてトレーニングデータセットのサイズのサブ線形トレーニング時間が短縮される。
論文 参考訳(メタデータ) (2023-02-24T10:32:30Z) - AskewSGD : An Annealed interval-constrained Optimisation method to train
Quantized Neural Networks [12.229154524476405]
我々は、深層ニューラルネットワーク(DNN)を量子化重みでトレーニングするための新しいアルゴリズム、Annealed Skewed SGD - AskewSGDを開発した。
アクティブなセットと実行可能な方向を持つアルゴリズムとは異なり、AskewSGDは実行可能な全セットの下でのプロジェクションや最適化を避けている。
実験結果から,AskewSGDアルゴリズムは古典的ベンチマークの手法と同等以上の性能を示した。
論文 参考訳(メタデータ) (2022-11-07T18:13:44Z) - Masked Bayesian Neural Networks : Computation and Optimality [1.3649494534428745]
そこで本稿では, 適切な複雑性を伴って, 優れた深層ニューラルネットワークを探索する, スパースベイズニューラルネットワーク(BNN)を提案する。
我々は各ノードのマスキング変数を用いて、後続分布に応じていくつかのノードをオフにし、ノードワイズDNNを生成する。
いくつかのベンチマークデータセットを解析することにより,提案したBNNが既存手法と比較してよく動作することを示す。
論文 参考訳(メタデータ) (2022-06-02T02:59:55Z) - Variational Sparse Coding with Learned Thresholding [6.737133300781134]
サンプルをしきい値にすることでスパース分布を学習できる変分スパース符号化の新しい手法を提案する。
まず,線形発生器を訓練し,その性能,統計的効率,勾配推定に優れることを示す。
論文 参考訳(メタデータ) (2022-05-07T14:49:50Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
我々は、暗黙的ニューラルネットワーク(INN)の堅牢性を保証するために、区間到達可能性分析を用いる。
INNは暗黙の方程式をレイヤとして使用する暗黙の学習モデルのクラスである。
提案手法は, INNに最先端の区間境界伝搬法を適用するよりも, 少なくとも, 一般的には, 有効であることを示す。
論文 参考訳(メタデータ) (2022-04-01T03:31:27Z) - Scaling Structured Inference with Randomization [64.18063627155128]
本稿では、構造化されたモデルを数万の潜在状態に拡張するためにランダム化された動的プログラミング(RDP)のファミリを提案する。
我々の手法は古典的DPベースの推論に広く適用できる。
また、自動微分とも互換性があり、ニューラルネットワークとシームレスに統合できる。
論文 参考訳(メタデータ) (2021-12-07T11:26:41Z) - Improving predictions of Bayesian neural nets via local linearization [79.21517734364093]
ガウス・ニュートン近似は基礎となるベイズニューラルネットワーク(BNN)の局所線形化として理解されるべきである。
この線形化モデルを後部推論に使用するので、元のモデルではなく、この修正モデルを使用することも予測すべきである。
この修正された予測を"GLM predictive"と呼び、Laplace近似の共通不適合問題を効果的に解決することを示す。
論文 参考訳(メタデータ) (2020-08-19T12:35:55Z) - Fast Learning of Graph Neural Networks with Guaranteed Generalizability:
One-hidden-layer Case [93.37576644429578]
グラフニューラルネットワーク(GNN)は、グラフ構造化データから実際に学習する上で、近年大きな進歩を遂げている。
回帰問題と二項分類問題の両方に隠れ層を持つGNNの理論的に基底的な一般化可能性解析を行う。
論文 参考訳(メタデータ) (2020-06-25T00:45:52Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。