Multi-Label Classification of Thoracic Diseases using Dense Convolutional Network on Chest Radiographs
- URL: http://arxiv.org/abs/2202.03583v4
- Date: Fri, 29 Mar 2024 18:57:25 GMT
- Title: Multi-Label Classification of Thoracic Diseases using Dense Convolutional Network on Chest Radiographs
- Authors: Dipkamal Bhusal, Sanjeeb Prasad Panday,
- Abstract summary: We propose a multi-label disease prediction model that allows the detection of more than one pathology at a given test time.
Our proposed model achieved the highest AUC score of 0.896 for the condition Cardiomegaly.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traditional methods of identifying pathologies in X-ray images rely heavily on skilled human interpretation and are often time-consuming. The advent of deep learning techniques has enabled the development of automated disease diagnosis systems. Still, the performance of such systems is opaque to end-users and limited to detecting a single pathology. In this paper, we propose a multi-label disease prediction model that allows the detection of more than one pathology at a given test time. We use a dense convolutional neural network (DenseNet) for disease diagnosis. Our proposed model achieved the highest AUC score of 0.896 for the condition Cardiomegaly with an accuracy of 0.826, while the lowest AUC score was obtained for Nodule, at 0.655 with an accuracy of 0.66. To build trust in decision-making, we generated heatmaps on X-rays to visualize the regions where the model paid attention to make certain predictions. Our proposed automated disease prediction model obtained highly confident high-performance metrics in multi-label disease prediction tasks.
Related papers
- AttCDCNet: Attention-enhanced Chest Disease Classification using X-Ray Images [0.0]
We propose a novel detection model named textbfAttCDCNet for the task of X-ray image diagnosis.
The proposed model achieved an accuracy, precision and recall of 94.94%, 95.14% and 94.53%, respectively, on the COVID-19 Radiography dataset.
arXiv Detail & Related papers (2024-10-20T16:08:20Z) - DDxT: Deep Generative Transformer Models for Differential Diagnosis [51.25660111437394]
We show that a generative approach trained with simpler supervised and self-supervised learning signals can achieve superior results on the current benchmark.
The proposed Transformer-based generative network, named DDxT, autoregressively produces a set of possible pathologies, i.e., DDx, and predicts the actual pathology using a neural network.
arXiv Detail & Related papers (2023-12-02T22:57:25Z) - Advancing Diagnostic Precision: Leveraging Machine Learning Techniques
for Accurate Detection of Covid-19, Pneumonia, and Tuberculosis in Chest
X-Ray Images [0.0]
Lung diseases such as COVID-19, tuberculosis (TB), and pneumonia continue to be serious global health concerns.
Paramedics and scientists are working intensively to create a reliable and precise approach for early-stage COVID-19 diagnosis.
arXiv Detail & Related papers (2023-10-09T18:38:49Z) - Reconstruction of Patient-Specific Confounders in AI-based Radiologic
Image Interpretation using Generative Pretraining [12.656718786788758]
We propose a self-conditioned diffusion model termed DiffChest and train it on a dataset of chest radiographs.
DiffChest explains classifications on a patient-specific level and visualizes the confounding factors that may mislead the model.
Our findings highlight the potential of pretraining based on diffusion models in medical image classification.
arXiv Detail & Related papers (2023-09-29T10:38:08Z) - Evolving Tsukamoto Neuro Fuzzy Model for Multiclass Covid 19
Classification with Chest X Ray Images [2.609784101826762]
We propose a machine learning based framework for the detection of Covid 19.
The proposed model employs a Tsukamoto Neuro Fuzzy Inference network to identify and distinguish Covid 19 disease.
The proposed model achieves an accuracy of 98.51%, sensitivity of 98.35%, specificity of 98.08%, and F1 score of 98.17%.
arXiv Detail & Related papers (2023-05-17T17:55:45Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
We present a novel approach for disease generation in X-rays using a conditional generative adversarial learning.
We generate a corresponding radiology image in a target domain while preserving the identity of the patient.
We then use the generated X-ray image in the target domain to augment our training to improve the detection performance.
arXiv Detail & Related papers (2021-10-25T14:15:57Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
Prostate cancer (PCa) is one of the leading causes of death among men, with almost 1.41 million new cases and around 375,000 deaths in 2020.
To perform an automatic diagnosis, prostate tissue samples are first digitized into gigapixel-resolution whole-slide images.
Small subimages called patches are extracted and predicted, obtaining a patch-level classification.
arXiv Detail & Related papers (2021-05-20T18:13:58Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.