Large-scale Quantum Approximate Optimization via Divide-and-Conquer
- URL: http://arxiv.org/abs/2102.13288v1
- Date: Fri, 26 Feb 2021 03:10:30 GMT
- Title: Large-scale Quantum Approximate Optimization via Divide-and-Conquer
- Authors: Junde Li, Mahabubul Alam, Swaroop Ghosh
- Abstract summary: We propose a Divide-and-Conquer QAOA (DC-QAOA) to address the challenges for graph maximum cut (MaxCut) problem.
DC-QAOA achieves 97.14% approximation ratio (20.32% higher than classical counterpart)
It also reduces the time complexity of conventional QAOA from exponential to quadratic.
- Score: 8.733794945008562
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum Approximate Optimization Algorithm (QAOA) is a promising hybrid
quantum-classical algorithm for solving combinatorial optimization problems.
However, it cannot overcome qubit limitation for large-scale problems.
Furthermore, the execution time of QAOA scales exponentially with the problem
size. We propose a Divide-and-Conquer QAOA (DC-QAOA) to address the above
challenges for graph maximum cut (MaxCut) problem. The algorithm works by
recursively partitioning a larger graph into smaller ones whose MaxCut
solutions are obtained with small-size NISQ computers. The overall solution is
retrieved from the sub-solutions by applying the combination policy of quantum
state reconstruction. Multiple partitioning and reconstruction methods are
proposed/ compared. DC-QAOA achieves 97.14% approximation ratio (20.32% higher
than classical counterpart), and 94.79% expectation value (15.80% higher than
quantum annealing). DC-QAOA also reduces the time complexity of conventional
QAOA from exponential to quadratic.
Related papers
- Hybrid Classical-Quantum Simulation of MaxCut using QAOA-in-QAOA [0.0]
In this work, an implementation of the QAOA2 method for the scalable solution of the MaxCut problem is presented.
The limits of the Goemans-Williamson (GW) algorithm as a purely classical alternative to QAOA are investigated.
Results from large-scale simulations of up to 33 qubits are presented, showing the advantage of QAOA in certain cases and the efficiency of the implementation.
arXiv Detail & Related papers (2024-06-25T09:02:31Z) - An Analysis of Quantum Annealing Algorithms for Solving the Maximum Clique Problem [49.1574468325115]
We analyse the ability of quantum D-Wave annealers to find the maximum clique on a graph, expressed as a QUBO problem.
We propose a decomposition algorithm for the complementary maximum independent set problem, and a graph generation algorithm to control the number of nodes, the number of cliques, the density, the connectivity indices and the ratio of the solution size to the number of other nodes.
arXiv Detail & Related papers (2024-06-11T04:40:05Z) - Depth scaling of unstructured search via quantum approximate optimization [0.0]
Variational quantum algorithms have become the de facto model for current quantum computations.
One such problem is unstructured search which consists on finding a particular bit of string.
We trotterize a CTQW to recover a QAOA sequence, and employ recent advances on the theory of Trotter formulas to bound the query complexity.
arXiv Detail & Related papers (2024-03-22T18:00:03Z) - QAOA with fewer qubits: a coupling framework to solve larger-scale
Max-Cut problem [6.783232060611114]
We propose a framework for designing QAOA circuits to solve larger-scale Max-Cut problem.
We derive an approximation guarantee theoretically, assuming the approximation ratio of the classical algorithm and QAOA.
Our framework only consumes $18$ qubits and $0.9950$ approximation ratio on average.
arXiv Detail & Related papers (2023-07-28T02:06:42Z) - QAOA-in-QAOA: solving large-scale MaxCut problems on small quantum
machines [81.4597482536073]
Quantum approximate optimization algorithms (QAOAs) utilize the power of quantum machines and inherit the spirit of adiabatic evolution.
We propose QAOA-in-QAOA ($textQAOA2$) to solve arbitrary large-scale MaxCut problems using quantum machines.
Our method can be seamlessly embedded into other advanced strategies to enhance the capability of QAOAs in large-scale optimization problems.
arXiv Detail & Related papers (2022-05-24T03:49:10Z) - Twisted hybrid algorithms for combinatorial optimization [68.8204255655161]
Proposed hybrid algorithms encode a cost function into a problem Hamiltonian and optimize its energy by varying over a set of states with low circuit complexity.
We show that for levels $p=2,ldots, 6$, the level $p$ can be reduced by one while roughly maintaining the expected approximation ratio.
arXiv Detail & Related papers (2022-03-01T19:47:16Z) - Scaling Quantum Approximate Optimization on Near-term Hardware [49.94954584453379]
We quantify scaling of the expected resource requirements by optimized circuits for hardware architectures with varying levels of connectivity.
We show the number of measurements, and hence total time to synthesizing solution, grows exponentially in problem size and problem graph degree.
These problems may be alleviated by increasing hardware connectivity or by recently proposed modifications to the QAOA that achieve higher performance with fewer circuit layers.
arXiv Detail & Related papers (2022-01-06T21:02:30Z) - Solving correlation clustering with QAOA and a Rydberg qudit system: a
full-stack approach [94.37521840642141]
We study the correlation clustering problem using the quantum approximate optimization algorithm (QAOA) and qudits.
Specifically, we consider a neutral atom quantum computer and propose a full stack approach for correlation clustering.
We show the qudit implementation is superior to the qubit encoding as quantified by the gate count.
arXiv Detail & Related papers (2021-06-22T11:07:38Z) - An adaptive quantum approximate optimization algorithm for solving
combinatorial problems on a quantum computer [0.0]
The quantum approximate optimization algorithm (QAOA) is a hybrid variational quantum-classical algorithm that solves optimization problems.
We develop an iterative version of QAOA that is problem-tailored, and which can also be adapted to specific hardware constraints.
We simulate the algorithm on a class of Max-Cut graph problems and show that it converges much faster than the standard QAOA.
arXiv Detail & Related papers (2020-05-20T18:00:01Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.