論文の概要: Why did the distribution change?
- arxiv url: http://arxiv.org/abs/2102.13384v1
- Date: Fri, 26 Feb 2021 10:22:59 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-01 13:59:30.262158
- Title: Why did the distribution change?
- Title(参考訳): なぜ流通が変わったのか?
- Authors: Kailash Budhathoki, Dominik Janzing, Patrick Bloebaum, Hoiyi Ng
- Abstract要約: 本稿では、変数の確率分布の変化の「根本原因」を特定するための形式的なアプローチを示す。
次に、男女の所得分布の違いの要因を特定する実世界のケーススタディを提示します。
- 参考スコア(独自算出の注目度): 10.855329745252776
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We describe a formal approach based on graphical causal models to identify
the "root causes" of the change in the probability distribution of variables.
After factorizing the joint distribution into conditional distributions of each
variable, given its parents (the "causal mechanisms"), we attribute the change
to changes of these causal mechanisms. This attribution analysis accounts for
the fact that mechanisms often change independently and sometimes only some of
them change. Through simulations, we study the performance of our distribution
change attribution method. We then present a real-world case study identifying
the drivers of the difference in the income distribution between men and women.
- Abstract(参考訳): 本稿では,変数の確率分布の変化の「根本原因」を特定するためのグラフィカル因果モデルに基づく形式的アプローチについて述べる。
共役分布を各変数の条件分布に分解し、その親(「因果メカニズム」)が与えられた後、これらの因果メカニズムの変化にその変化を分類する。
この属性分析は、メカニズムがしばしば独立して変化し、時には一部しか変化しないという事実を表します。
シミュレーションにより,分布変化帰属法の性能について検討した。
次に、男女の所得分布の違いの要因を特定する実世界のケーススタディを提示します。
関連論文リスト
- Multiply-Robust Causal Change Attribution [15.501106533308798]
我々は,各因果メカニズムの貢献度を定量化するために,回帰法と再重み付け法を組み合わせた新しい推定方法を開発した。
本手法はモンテカルロシミュレーションにおいて優れた性能を示し,その有効性を示す。
論文 参考訳(メタデータ) (2024-04-12T22:57:01Z) - Proxy Methods for Domain Adaptation [78.03254010884783]
プロキシ変数は、遅延変数を明示的にリカバリしたりモデル化したりすることなく、分散シフトへの適応を可能にする。
両設定の複雑な分散シフトに適応する2段階のカーネル推定手法を開発した。
論文 参考訳(メタデータ) (2024-03-12T09:32:41Z) - Causal Representation Learning from Multiple Distributions: A General Setting [21.73088044465267]
本稿では,複数の分布からの因果表現学習の一般的,完全に非パラメトリックな設定について述べる。
因果的影響に対する適切な変化条件と、潜伏変数上のグラフの空間的制約の下で、基礎となる有向非巡回グラフのモラル化グラフを復元できることが示される。
場合によっては、ほとんどの潜伏変数はコンポーネントワイド変換まで回収できる。
論文 参考訳(メタデータ) (2024-02-07T17:51:38Z) - Nonparametric Partial Disentanglement via Mechanism Sparsity: Sparse
Actions, Interventions and Sparse Temporal Dependencies [58.179981892921056]
この研究は、メカニズムのスパーシティ正則化(英語版)と呼ばれる、アンタングルメントの新たな原理を導入する。
本稿では,潜在要因を同時に学習することで,絡み合いを誘発する表現学習手法を提案する。
学習した因果グラフをスパースに規則化することにより、潜伏因子を復元できることを示す。
論文 参考訳(メタデータ) (2024-01-10T02:38:21Z) - A Causal Framework for Decomposing Spurious Variations [68.12191782657437]
我々はマルコフモデルとセミマルコフモデルの急激な変分を分解するツールを開発する。
突発効果の非パラメトリック分解を可能にする最初の結果を証明する。
説明可能なAIや公平なAIから、疫学や医学における疑問まで、いくつかの応用がある。
論文 参考訳(メタデータ) (2023-06-08T09:40:28Z) - "Why did the Model Fail?": Attributing Model Performance Changes to
Distribution Shifts [17.381178048938068]
本稿では,環境間の性能差を基礎となるデータ生成機構の分散シフトに寄与する問題を紹介する。
任意の分布の集合の値を計算するための重み付け法を導出する。
本研究では, 合成, 半合成, 実世界のケーススタディにおいて, 提案手法の正しさと有用性を示す。
論文 参考訳(メタデータ) (2022-10-19T17:58:09Z) - Causal Discovery in Heterogeneous Environments Under the Sparse
Mechanism Shift Hypothesis [7.895866278697778]
機械学習のアプローチは、一般に独立で同一に分散されたデータ(すなわち、d)の仮定に依存する。
実際、この仮定は環境間の分散シフトによってほとんど常に破られる。
そこで我々は,様々な経験的推定器に適用可能なスコアベースアプローチであるメカニズムシフトスコア(MSS)を提案する。
論文 参考訳(メタデータ) (2022-06-04T15:39:30Z) - Learning Latent Causal Dynamics [14.762231867144065]
時間遅延型因果変数を復元する原理的フレームワークLiLYを提案する。
次に、異なる分布シフトの下で測定された時間データからそれらの関係を同定する。
修正ステップは、いくつかのサンプルで低次元の変化係数を学習するものとして定式化される。
論文 参考訳(メタデータ) (2022-02-10T04:23:32Z) - Adversarial Robustness through the Lens of Causality [105.51753064807014]
ディープニューラルネットワークの敵対的脆弱性は、機械学習において大きな注目を集めている。
我々は、因果関係を敵対的脆弱性の軽減に組み込むことを提案する。
我々の手法は、敵の脆弱性を緩和するために因果性を利用する最初の試みと見なすことができる。
論文 参考訳(メタデータ) (2021-06-11T06:55:02Z) - Counterfactual Invariance to Spurious Correlations: Why and How to Pass
Stress Tests [87.60900567941428]
素早い相関」とは、アナリストが重要とすべきでないと考える入力データのある側面に対するモデルの依存である。
機械学習では、これらにはノウ・イ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ」という特徴がある。
因果推論ツールを用いたストレステストについて検討した。
論文 参考訳(メタデータ) (2021-05-31T14:39:38Z) - Few-shot Domain Adaptation by Causal Mechanism Transfer [107.08605582020866]
我々は,少数のラベル付き対象ドメインデータと多数のラベル付きソースドメインデータしか利用できないレグレッション問題に対して,数ショットの教師付きドメイン適応(DA)について検討する。
現在のDA法の多くは、パラメータ化された分布シフトまたは明らかな分布類似性に基づく転送仮定に基づいている。
本稿では,データ生成機構がドメイン間で不変であるメタ分散シナリオであるメカニズム転送を提案する。
論文 参考訳(メタデータ) (2020-02-10T02:16:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。