論文の概要: Causal Discovery in Heterogeneous Environments Under the Sparse
Mechanism Shift Hypothesis
- arxiv url: http://arxiv.org/abs/2206.02013v1
- Date: Sat, 4 Jun 2022 15:39:30 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-07 12:49:47.309342
- Title: Causal Discovery in Heterogeneous Environments Under the Sparse
Mechanism Shift Hypothesis
- Title(参考訳): スパース機構シフト仮説に基づく不均質環境における因果発見
- Authors: Ronan Perry, Julius von K\"ugelgen, Bernhard Sch\"olkopf
- Abstract要約: 機械学習のアプローチは、一般に独立で同一に分散されたデータ(すなわち、d)の仮定に依存する。
実際、この仮定は環境間の分散シフトによってほとんど常に破られる。
そこで我々は,様々な経験的推定器に適用可能なスコアベースアプローチであるメカニズムシフトスコア(MSS)を提案する。
- 参考スコア(独自算出の注目度): 7.895866278697778
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning approaches commonly rely on the assumption of independent
and identically distributed (i.i.d.) data. In reality, however, this assumption
is almost always violated due to distribution shifts between environments.
Although valuable learning signals can be provided by heterogeneous data from
changing distributions, it is also known that learning under arbitrary
(adversarial) changes is impossible. Causality provides a useful framework for
modeling distribution shifts, since causal models encode both observational and
interventional distributions. In this work, we explore the sparse mechanism
shift hypothesis, which posits that distribution shifts occur due to a small
number of changing causal conditionals. Motivated by this idea, we apply it to
learning causal structure from heterogeneous environments, where i.i.d. data
only allows for learning an equivalence class of graphs without restrictive
assumptions. We propose the Mechanism Shift Score (MSS), a score-based approach
amenable to various empirical estimators, which provably identifies the entire
causal structure with high probability if the sparse mechanism shift hypothesis
holds. Empirically, we verify behavior predicted by the theory and compare
multiple estimators and score functions to identify the best approaches in
practice. Compared to other methods, we show how MSS bridges a gap by both
being nonparametric as well as explicitly leveraging sparse changes.
- Abstract(参考訳): 機械学習のアプローチは、一般に独立で同一に分散されたデータ(すなわち、d)の仮定に依存する。
しかし実際には、環境間の分散シフトのため、この仮定はほとんど常に違反している。
価値ある学習信号は分布の変化による異種データによって提供することができるが、任意(逆)な変化による学習は不可能であることも知られている。
因果モデルは観測分布と介入分布の両方をエンコードするため、因果性は分布シフトをモデル化するための有用なフレームワークを提供する。
本研究では,少数の因果条件の変化による分布変化を仮定するスパース機構シフト仮説について検討する。
このアイデアに動機付けられて、不均一な環境から因果構造を学ぶことに応用する。
そこで本研究では,様々な経験的推定器に適応可能な手法であるメカニズムシフトスコア(mss)を提案し,スパース機構シフト仮説が成り立つ場合,因果構造全体を高い確率で同定する。
実験により,理論によって予測される振る舞いを検証し,複数の推定値とスコア関数を比較して,現実の最良のアプローチを特定する。
他の手法と比較して、MSSが非パラメトリックであると同時にスパース変化を明示的に活用することでギャップを埋めることを示す。
関連論文リスト
- Learning When the Concept Shifts: Confounding, Invariance, and Dimension Reduction [5.38274042816001]
観測データでは、分布シフトは観測されていない共起因子によって駆動されることが多い。
このことは、観測データを用いた領域適応問題の研究を動機付けます。
学習した低次元部分空間を用いて、ターゲットとソースのリスクの間にほぼ理想的なギャップを生じさせるモデルを示す。
論文 参考訳(メタデータ) (2024-06-22T17:43:08Z) - Identifiable Latent Neural Causal Models [82.14087963690561]
因果表現学習は、低レベルの観測データから潜伏した高レベルの因果表現を明らかにすることを目指している。
因果表現の識別可能性に寄与する分布シフトのタイプを決定する。
本稿では,本研究の成果を実用的なアルゴリズムに翻訳し,信頼性の高い潜在因果表現の取得を可能にする。
論文 参考訳(メタデータ) (2024-03-23T04:13:55Z) - Proxy Methods for Domain Adaptation [78.03254010884783]
プロキシ変数は、遅延変数を明示的にリカバリしたりモデル化したりすることなく、分散シフトへの適応を可能にする。
両設定の複雑な分散シフトに適応する2段階のカーネル推定手法を開発した。
論文 参考訳(メタデータ) (2024-03-12T09:32:41Z) - iSCAN: Identifying Causal Mechanism Shifts among Nonlinear Additive
Noise Models [48.33685559041322]
本稿では,同一変数集合上の2つ以上の関連するデータセットにおける因果メカニズムシフトの同定に焦点をあてる。
提案手法を実装したコードはオープンソースであり、https://github.com/kevinsbello/iSCAN.comで公開されている。
論文 参考訳(メタデータ) (2023-06-30T01:48:11Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
本研究では, 因果表現学習, 潜伏因果変数を推定するタスク, およびそれらの変数の混合から因果関係を考察する。
我々のゴールは、根底にある真理潜入者とその因果グラフの両方を、介入データから解決不可能なあいまいさの集合まで識別することである。
論文 参考訳(メタデータ) (2023-06-01T10:51:58Z) - On the Interventional Kullback-Leibler Divergence [11.57430292133273]
因果モデル間の構造的差異と分布的差異を定量化するために、Interventional Kullback-Leibler divergenceを導入する。
本稿では,介入対象に対する十分な条件を提案し,モデルが確実に一致または一致しない観察変数のサブセットを同定する。
論文 参考訳(メタデータ) (2023-02-10T17:03:29Z) - Typing assumptions improve identification in causal discovery [123.06886784834471]
観測データからの因果発見は、正確な解を常に特定できない難しい課題である。
そこで本研究では,変数の性質に基づいた因果関係を制約する仮説を新たに提案する。
論文 参考訳(メタデータ) (2021-07-22T14:23:08Z) - Nonlinear Invariant Risk Minimization: A Causal Approach [5.63479133344366]
非線形環境下での分布外一般化を可能にする学習パラダイムを提案する。
我々は、非常に単純な変換までデータ表現の識別性を示す。
合成データと実世界のデータセットの両方に関する広範な実験は、我々のアプローチが様々なベースラインメソッドを大きく上回っていることを示している。
論文 参考訳(メタデータ) (2021-02-24T15:38:41Z) - Few-shot Domain Adaptation by Causal Mechanism Transfer [107.08605582020866]
我々は,少数のラベル付き対象ドメインデータと多数のラベル付きソースドメインデータしか利用できないレグレッション問題に対して,数ショットの教師付きドメイン適応(DA)について検討する。
現在のDA法の多くは、パラメータ化された分布シフトまたは明らかな分布類似性に基づく転送仮定に基づいている。
本稿では,データ生成機構がドメイン間で不変であるメタ分散シナリオであるメカニズム転送を提案する。
論文 参考訳(メタデータ) (2020-02-10T02:16:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。