Towards Synthesizing Twelve-Lead Electrocardiograms from Two Asynchronous Leads
- URL: http://arxiv.org/abs/2103.00006v4
- Date: Tue, 25 Jun 2024 22:46:15 GMT
- Title: Towards Synthesizing Twelve-Lead Electrocardiograms from Two Asynchronous Leads
- Authors: Yong-Yeon Jo, Young Sang Choi, Jong-Hwan Jang, Joon-Myoung Kwon,
- Abstract summary: Several types of the cardiac disease are diagnosed by using 12-lead ECGs.
Various wearable devices have enabled immediate access to the ECG without the use of wieldy equipment.
We propose a deep generative model for ECG synthesis from two asynchronous leads to ten leads.
- Score: 1.674731937678848
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The electrocardiogram (ECG) records electrical signals in a non-invasive way to observe the condition of the heart, typically looking at the heart from 12 different directions. Several types of the cardiac disease are diagnosed by using 12-lead ECGs Recently, various wearable devices have enabled immediate access to the ECG without the use of wieldy equipment. However, they only provide ECGs with a couple of leads. This results in an inaccurate diagnosis of cardiac disease due to lacking of required leads. We propose a deep generative model for ECG synthesis from two asynchronous leads to ten leads. It first represents a heart condition referring to two leads, and then generates ten leads based on the represented heart condition. Both the rhythm and amplitude of leads generated resemble those of the original ones, while the technique removes noise and the baseline wander appearing in the original leads. As a data augmentation method, our model improves the classification performance of models compared with models using ECGs with only one or two leads.
Related papers
- Self-supervised inter-intra period-aware ECG representation learning for detecting atrial fibrillation [41.82319894067087]
We propose an inter-intra period-aware ECG representation learning approach.
Considering ECGs of atrial fibrillation patients exhibit the irregularity in RR intervals and the absence of P-waves, we develop specific pre-training tasks for interperiod and intraperiod representations.
Our approach demonstrates remarkable AUC performances on the BTCH dataset, textiti.e., 0.953/0.996 for paroxysmal/persistent atrial fibrillation detection.
arXiv Detail & Related papers (2024-10-08T10:03:52Z) - MEIT: Multi-Modal Electrocardiogram Instruction Tuning on Large Language Models for Report Generation [41.324530807795256]
Electrocardiogram (ECG) is the primary non-invasive diagnostic tool for monitoring cardiac conditions.
Recent studies have concentrated on classifying cardiac conditions using ECG data but have overlooked ECG report generation.
We propose the Multimodal ECG Instruction Tuning (MEIT) framework, the first attempt to tackle ECG report generation with LLMs and multimodal instructions.
arXiv Detail & Related papers (2024-03-07T23:20:56Z) - ECGformer: Leveraging transformer for ECG heartbeat arrhythmia
classification [0.0]
An arrhythmia, also known as a dysrhythmia, refers to an irregular heartbeat.
Deep learning has demonstrated exceptional capabilities in tackling various medical challenges.
We develop the ECGformer model for the classification of various arrhythmias present in electrocardiogram data.
arXiv Detail & Related papers (2024-01-06T06:14:48Z) - Improving Diffusion Models for ECG Imputation with an Augmented Template
Prior [43.6099225257178]
noisy and poor-quality recordings are a major issue for signals collected using mobile health systems.
Recent studies have explored the imputation of missing values in ECG with probabilistic time-series models.
We present a template-guided denoising diffusion probabilistic model (DDPM), PulseDiff, which is conditioned on an informative prior for a range of health conditions.
arXiv Detail & Related papers (2023-10-24T11:34:15Z) - PulseNet: Deep Learning ECG-signal classification using random
augmentation policy and continous wavelet transform for canines [46.09869227806991]
evaluating canine electrocardiograms (ECG) require skilled veterinarians.
Current availability of veterinary cardiologists for ECG interpretation and diagnostic support is limited.
We implement a deep convolutional neural network (CNN) approach for classifying canine electrocardiogram sequences as either normal or abnormal.
arXiv Detail & Related papers (2023-05-17T09:06:39Z) - Enhancing Deep Learning-based 3-lead ECG Classification with Heartbeat
Counting and Demographic Data Integration [0.0]
This article introduces two novel techniques to improve the performance of the current deep learning system for 3-lead ECG classification.
Specifically, we propose a multi-task learning scheme in the form of the number of heartbeats regression and an effective mechanism to integrate patient demographic data into the system.
With these two advancements, we got classification performance in terms of F1 scores of 0.9796 and 0.8140 on two large-scale ECG datasets.
arXiv Detail & Related papers (2022-08-15T09:33:36Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
Existing databases for ECG delineation are small, being insufficient in size and in the array of pathological conditions they represent.
This article delves has two main contributions. First, a pseudo-synthetic data generation algorithm was developed, based in probabilistically composing ECG traces given "pools" of fundamental segments, as cropped from the original databases, and a set of rules for their arrangement into coherent synthetic traces.
Second, two novel segmentation-based loss functions have been developed, which attempt at enforcing the prediction of an exact number of independent structures and at producing closer segmentation boundaries by focusing on a reduced number of samples.
arXiv Detail & Related papers (2021-11-25T10:11:41Z) - Synthesis of standard 12-lead electrocardiograms using two dimensional
generative adversarial network [0.0]
The proposed model is able to produce synthetic standard 12-lead ECG signals with success rates of 98% for LVH, 93% for LBBB, 79% for ACUTMI, and 59% for Normal.
It is feasible to use a 2D GAN to produce standard 12-lead ECGs suitable to augment artificially a diverse database of real ECGs.
arXiv Detail & Related papers (2021-06-02T00:59:04Z) - Multilabel 12-Lead Electrocardiogram Classification Using Gradient
Boosting Tree Ensemble [64.29529357862955]
We build an algorithm using gradient boosted tree ensembles fitted on morphology and signal processing features to classify ECG diagnosis.
For each lead, we derive features from heart rate variability, PQRST template shape, and the full signal waveform.
We join the features of all 12 leads to fit an ensemble of gradient boosting decision trees to predict probabilities of ECG instances belonging to each class.
arXiv Detail & Related papers (2020-10-21T18:11:36Z) - CardioGAN: Attentive Generative Adversarial Network with Dual
Discriminators for Synthesis of ECG from PPG [25.305949034527202]
Electrocardiogram (ECG) is the electrical measurement of cardiac activity.
Photoplethysmogram ( PPG) is the optical measurement of changes in blood circulation.
We propose CardioGAN, an adversarial model which takes PPG as input and generates ECG as output.
arXiv Detail & Related papers (2020-09-30T20:49:30Z) - Classification of Arrhythmia by Using Deep Learning with 2-D ECG
Spectral Image Representation [3.3426603061273994]
We propose a two-dimensional (2-D) convolutional neural network (CNN) model for the classification of ECG signals into eight classes.
We achieved a state-of-the-art average classification accuracy of 99.11%, which is better than those of recently reported results in classifying similar types of arrhythmias.
arXiv Detail & Related papers (2020-05-14T12:11:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.