論文の概要: Learning Frequency Domain Approximation for Binary Neural Networks
- arxiv url: http://arxiv.org/abs/2103.00841v1
- Date: Mon, 1 Mar 2021 08:25:26 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-03 16:36:42.791060
- Title: Learning Frequency Domain Approximation for Binary Neural Networks
- Title(参考訳): 二元ニューラルネットワークの学習周波数領域近似
- Authors: Yixing Xu, Kai Han, Chang Xu, Yehui Tang, Chunjing Xu, Yunhe Wang
- Abstract要約: フーリエ周波数領域における符号関数の勾配を正弦関数の組み合わせを用いて推定し,BNNの訓練を行う。
いくつかのベンチマークデータセットとニューラルネットワークの実験により、この手法で学習したバイナリネットワークが最先端の精度を達成することが示されている。
- 参考スコア(独自算出の注目度): 68.79904499480025
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Binary neural networks (BNNs) represent original full-precision weights and
activations into 1-bit with sign function. Since the gradient of the
conventional sign function is almost zero everywhere which cannot be used for
back-propagation, several attempts have been proposed to alleviate the
optimization difficulty by using approximate gradient. However, those
approximations corrupt the main direction of de facto gradient. To this end, we
propose to estimate the gradient of sign function in the Fourier frequency
domain using the combination of sine functions for training BNNs, namely
frequency domain approximation (FDA). The proposed approach does not affect the
low-frequency information of the original sign function which occupies most of
the overall energy, and high-frequency coefficients will be ignored to avoid
the huge computational overhead. In addition, we embed a noise adaptation
module into the training phase to compensate the approximation error. The
experiments on several benchmark datasets and neural architectures illustrate
that the binary network learned using our method achieves the state-of-the-art
accuracy.
- Abstract(参考訳): バイナリニューラルネットワーク(BNN)は、元の完全精度の重みと1ビットへのアクティベーションを符号関数で表現する。
従来の符号関数の勾配は、バックプロパゲーションに使用できないあらゆる場所においてほぼゼロであるため、近似勾配を用いて最適化の困難さを緩和する試みがいくつか提案されている。
しかし、これらの近似はデファクト勾配の主方向を損なう。
そこで本研究では,周波数領域近似(FDA)をトレーニングするための正弦関数の組み合わせを用いて,フーリエ周波数領域における符号関数の勾配を推定する。
提案手法は,全エネルギーのほとんどを占める元の符号関数の低周波情報には影響を与えず,膨大な計算オーバーヘッドを回避するために高周波係数は無視される。
さらに,雑音適応モジュールをトレーニングフェーズに組み込んで近似誤差を補償する。
いくつかのベンチマークデータセットとニューラルネットワークの実験により、この手法で学習したバイナリネットワークが最先端の精度を達成することが示されている。
関連論文リスト
- Spectral-Refiner: Fine-Tuning of Accurate Spatiotemporal Neural Operator for Turbulent Flows [6.961408873053586]
本稿では,ボヒナー空間間のマップを学習する新しい時間的ニューラル演算子(SFNO)と,これらの問題に対処する新しい学習フレームワークを提案する。
この新しいパラダイムは、従来の数値PDE理論と技法の知恵を利用して、一般的に採用されているエンドツーエンドのニューラル演算子のトレーニングと評価のパイプラインを洗練する。
2次元NSEのための一般的なベンチマークの数値実験は、エンドツーエンド評価や従来の数値PDEソルバと比較して計算効率と精度の両方が大幅に向上した。
論文 参考訳(メタデータ) (2024-05-27T14:33:06Z) - BiPer: Binary Neural Networks using a Periodic Function [17.461853355858022]
量子ニューラルネットワークは、重みとアクティベーションの両方に精度の低下した表現を用いる。
バイナリニューラルネットワーク(BNN)は極端量子化のケースであり、わずか1ビットで値を表す。
現在のBNNのアプローチとは対照的に,バイナライゼーションにおいて,バイナリ周期関数 (BiPer) を用いる方法を提案する。
論文 参考訳(メタデータ) (2024-04-01T17:52:17Z) - Guaranteed Approximation Bounds for Mixed-Precision Neural Operators [83.64404557466528]
我々は、ニューラル演算子学習が本質的に近似誤差を誘導する直感の上に構築する。
提案手法では,GPUメモリ使用量を最大50%削減し,スループットを58%向上する。
論文 参考訳(メタデータ) (2023-07-27T17:42:06Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
しきい値アクティベートを伴うディープニューラルネットワークの重み劣化正規化学習問題について検討した。
ネットワークの特定の層でデータセットを破砕できる場合に、簡易な凸最適化の定式化を導出する。
論文 参考訳(メタデータ) (2023-03-06T18:59:13Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - Implicit Bias in Leaky ReLU Networks Trained on High-Dimensional Data [63.34506218832164]
本研究では,ReLUを活性化した2層完全連結ニューラルネットワークにおける勾配流と勾配降下の暗黙的バイアスについて検討する。
勾配流には、均一なニューラルネットワークに対する暗黙のバイアスに関する最近の研究を活用し、リーク的に勾配流が2つ以上のランクを持つニューラルネットワークを生成することを示す。
勾配降下は, ランダムな分散が十分小さい場合, 勾配降下の1ステップでネットワークのランクが劇的に低下し, トレーニング中もランクが小さくなることを示す。
論文 参考訳(メタデータ) (2022-10-13T15:09:54Z) - Scaling Forward Gradient With Local Losses [117.22685584919756]
フォワード学習は、ディープニューラルネットワークを学ぶためのバックプロップに代わる生物学的に妥当な代替手段である。
重みよりも活性化に摂動を適用することにより、前方勾配のばらつきを著しく低減できることを示す。
提案手法はMNIST と CIFAR-10 のバックプロップと一致し,ImageNet 上で提案したバックプロップフリーアルゴリズムよりも大幅に優れていた。
論文 参考訳(メタデータ) (2022-10-07T03:52:27Z) - Overcoming the Spectral Bias of Neural Value Approximation [17.546011419043644]
ディープニューラルネットワークを用いた値近似は、アルゴリズムの他の部分に学習信号を提供する主要なモジュールであることが多い。
神経核レグレッションにおける最近の研究は、スペクトルバイアスの存在を示唆している。そこでは、値関数の高周波成分を適合させるには、低周波成分よりも指数関数的に多くの勾配更新ステップが必要である。
我々は、カーネルレグレッションのレンズを通して、非政治強化学習を再検討し、複合神経カーネルを介してそのようなバイアスを克服することを提案する。
論文 参考訳(メタデータ) (2022-06-09T17:59:57Z) - Convergence rates for gradient descent in the training of
overparameterized artificial neural networks with biases [3.198144010381572]
近年、人工ニューラルネットワークは、古典的なソリューションが近づいている多数の問題に対処するための強力なツールに発展しています。
ランダムな勾配降下アルゴリズムが限界に達する理由はまだ不明である。
論文 参考訳(メタデータ) (2021-02-23T18:17:47Z) - BinaryDuo: Reducing Gradient Mismatch in Binary Activation Network by
Coupling Binary Activations [16.92918746295432]
本稿では,2つのバイナリアクティベーションを3次アクティベーションに結合するバイナリアクティベーションネットワークBinaryDuoを提案する。
実験結果から,BinaryDuoはパラメータと計算コストの同じベンチマークにおいて,最先端のBNNよりも優れていた。
論文 参考訳(メタデータ) (2020-02-16T06:18:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。