Diverse Critical Interaction Generation for Planning and Planner
Evaluation
- URL: http://arxiv.org/abs/2103.00906v1
- Date: Mon, 1 Mar 2021 10:52:36 GMT
- Title: Diverse Critical Interaction Generation for Planning and Planner
Evaluation
- Authors: Zhao-Heng Yin, Lingfeng Sun, Liting Sun, Masayoshi Tomizuka, Wei Zhan
- Abstract summary: We propose a styled generative model RouteGAN that generates diverse interactions by controlling the vehicles separately with desired styles.
By altering its style coefficients, the model can generate trajectories with different safety levels serve as an online planner.
- Score: 19.08679318138525
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generating diverse and comprehensive interacting agents to evaluate the
decision-making modules of autonomous vehicles~(AV) is essential for safe and
robust planning. Due to efficiency and safety concerns, most researchers choose
to train adversary agents in simulators and generate test cases to interact
with evaluated AVs. However, most existing methods fail to provide both natural
and critical interaction behaviors in various traffic scenarios. To tackle this
problem, we propose a styled generative model RouteGAN that generates diverse
interactions by controlling the vehicles separately with desired styles. By
altering its style coefficients, the model can generate trajectories with
different safety levels serve as an online planner. Experiments show that our
model can generate diverse interactions in various scenarios. We evaluate
different planners with our model by testing their collision rate in
interaction with RouteGAN planners of multiple critical levels.
Related papers
- AdvDiffuser: Generating Adversarial Safety-Critical Driving Scenarios via Guided Diffusion [6.909801263560482]
AdvDiffuser is an adversarial framework for generating safety-critical driving scenarios through guided diffusion.
We show that AdvDiffuser can be applied to various tested systems with minimal warm-up episode data.
arXiv Detail & Related papers (2024-10-11T02:03:21Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
We introduce SAFE-SIM, a controllable closed-loop safety-critical simulation framework.
Our approach yields two distinct advantages: 1) generating realistic long-tail safety-critical scenarios that closely reflect real-world conditions, and 2) providing controllable adversarial behavior for more comprehensive and interactive evaluations.
We validate our framework empirically using the nuScenes and nuPlan datasets across multiple planners, demonstrating improvements in both realism and controllability.
arXiv Detail & Related papers (2023-12-31T04:14:43Z) - Interactive Autonomous Navigation with Internal State Inference and
Interactivity Estimation [58.21683603243387]
We propose three auxiliary tasks with relational-temporal reasoning and integrate them into the standard Deep Learning framework.
These auxiliary tasks provide additional supervision signals to infer the behavior patterns other interactive agents.
Our approach achieves robust and state-of-the-art performance in terms of standard evaluation metrics.
arXiv Detail & Related papers (2023-11-27T18:57:42Z) - Diverse Probabilistic Trajectory Forecasting with Admissibility
Constraints [19.977040198878978]
We propose a novel method for structured prediction of diverse trajectories.
We combine these two novel components with a gating operation, ensuring that the predictions are both diverse and within the drivable area.
We demonstrate on the nuScenes driving dataset the relevance of our compound approach.
arXiv Detail & Related papers (2023-02-07T13:36:27Z) - Deep Interactive Motion Prediction and Planning: Playing Games with
Motion Prediction Models [162.21629604674388]
This work presents a game-theoretic Model Predictive Controller (MPC) that uses a novel interactive multi-agent neural network policy as part of its predictive model.
Fundamental to the success of our method is the design of a novel multi-agent policy network that can steer a vehicle given the state of the surrounding agents and the map information.
arXiv Detail & Related papers (2022-04-05T17:58:18Z) - LookOut: Diverse Multi-Future Prediction and Planning for Self-Driving [139.33800431159446]
LookOut is an approach to jointly perceive the environment and predict a diverse set of futures from sensor data.
We show that our model demonstrates significantly more diverse and sample-efficient motion forecasting in a large-scale self-driving dataset.
arXiv Detail & Related papers (2021-01-16T23:19:22Z) - Instance-Aware Predictive Navigation in Multi-Agent Environments [93.15055834395304]
We propose an Instance-Aware Predictive Control (IPC) approach, which forecasts interactions between agents as well as future scene structures.
We adopt a novel multi-instance event prediction module to estimate the possible interaction among agents in the ego-centric view.
We design a sequential action sampling strategy to better leverage predicted states on both scene-level and instance-level.
arXiv Detail & Related papers (2021-01-14T22:21:25Z) - Discovering Avoidable Planner Failures of Autonomous Vehicles using
Counterfactual Analysis in Behaviorally Diverse Simulation [16.86782673205523]
We introduce a planner testing framework that leverages recent progress in simulating behaviorally diverse traffic participants.
We show that our method can indeed find a wide range of critical planner failures.
arXiv Detail & Related papers (2020-11-24T09:44:23Z) - Risk-Sensitive Sequential Action Control with Multi-Modal Human
Trajectory Forecasting for Safe Crowd-Robot Interaction [55.569050872780224]
We present an online framework for safe crowd-robot interaction based on risk-sensitive optimal control, wherein the risk is modeled by the entropic risk measure.
Our modular approach decouples the crowd-robot interaction into learning-based prediction and model-based control.
A simulation study and a real-world experiment show that the proposed framework can accomplish safe and efficient navigation while avoiding collisions with more than 50 humans in the scene.
arXiv Detail & Related papers (2020-09-12T02:02:52Z) - MIDAS: Multi-agent Interaction-aware Decision-making with Adaptive
Strategies for Urban Autonomous Navigation [22.594295184455]
This paper builds a reinforcement learning-based method named MIDAS where an ego-agent learns to affect the control actions of other cars.
MIDAS is validated using extensive experiments and we show that it (i) can work across different road geometries, (ii) is robust to changes in the driving policies of external agents, and (iv) is more efficient and safer than existing approaches to interaction-aware decision-making.
arXiv Detail & Related papers (2020-08-17T04:34:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.