論文の概要: Reflections on the Clinical Acceptance of Artificial Intelligence
- arxiv url: http://arxiv.org/abs/2103.01149v1
- Date: Mon, 1 Mar 2021 17:34:09 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-09 14:34:40.510140
- Title: Reflections on the Clinical Acceptance of Artificial Intelligence
- Title(参考訳): 人工知能の臨床受容に関する考察
- Authors: Jens Schneider, Marco Agus
- Abstract要約: この章は、人工知能(AI)の使用と臨床環境におけるその受容を反映している。
我々は,AIと臨床実践を組み合わせたパイプラインモデルの形で臨床受け入れの障害を概観する。
- 参考スコア(独自算出の注目度): 15.594759364908235
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this chapter, we reflect on the use of Artificial Intelligence (AI) and
its acceptance in clinical environments. We develop a general view of
hindrances for clinical acceptance in the form of a pipeline model combining AI
and clinical practise. We then link each challenge to the relevant stage in the
pipeline and discuss the necessary requirements in order to overcome each
challenge. We complement this discussion with an overview of opportunities for
AI, which we currently see at the periphery of clinical workflows.
- Abstract(参考訳): 本章では,人工知能(AI)の使用と臨床環境における受容について考察する。
我々は,AIと臨床実践を組み合わせたパイプラインモデルの形で臨床受け入れの障害を概観する。
次に、各課題をパイプラインの関連するステージにリンクし、各課題を克服するために必要な要件を議論します。
私たちはこの議論を、現在臨床ワークフローの周辺で見られるaiの機会の概要と共に補完します。
関連論文リスト
- Clinicians' Voice: Fundamental Considerations for XAI in Healthcare [0.0]
臨床医との半構造化インタビューを行い、彼らの考え、希望、懸念について論じる。
臨床医は一般的に、臨床実習のためのAIベースのツールの開発を肯定的に考えている。
彼らは、これらがワークフローにどのように適合し、それが臨床医と患者の関係にどのように影響するかを懸念している。
論文 参考訳(メタデータ) (2024-11-07T16:47:06Z) - Clinical Evaluation of Medical Image Synthesis: A Case Study in Wireless Capsule Endoscopy [63.39037092484374]
本研究は,人工知能(AI)モデルを用いた医用合成データ生成の臨床評価に焦点を当てた。
本論文は,a) 医用専門家による合成画像の体系的評価のためのプロトコルを提示し,b) 高分解能WCE画像合成のための新しい変分オートエンコーダモデルであるTIDE-IIを評価する。
その結果、TIDE-IIは臨床的に関連性のあるWCE画像を生成し、データの不足に対処し、診断ツールの強化に役立つことがわかった。
論文 参考訳(メタデータ) (2024-10-31T19:48:50Z) - A Tutorial on Clinical Speech AI Development: From Data Collection to Model Validation [19.367198670893778]
本稿では,臨床音声AIの堅牢な開発に必要な要素について概説する。
目的は、入力と出力がより解釈可能で臨床的に意味のある音声の側面にリンクするモデルの構築に関する包括的なガイダンスを提供することである。
論文 参考訳(メタデータ) (2024-10-29T00:58:15Z) - Artificial intelligence techniques in inherited retinal diseases: A review [19.107474958408847]
遺伝性網膜疾患(英: InheritedRetinal disease、IRD)は、進行性視力低下を引き起こす多様な遺伝性疾患群であり、労働年齢層の視覚障害の主要な原因である。
人工知能(AI)の最近の進歩は、これらの課題に対する有望な解決策を提供する。
このレビューは既存の研究を統合し、ギャップを特定し、IRDの診断と管理におけるAIの可能性の概要を提供する。
論文 参考訳(メタデータ) (2024-10-10T03:14:51Z) - Dr-LLaVA: Visual Instruction Tuning with Symbolic Clinical Grounding [53.629132242389716]
VLM(Vision-Language Models)は、医用画像を分析し、自然言語の相互作用に関与することによって、臨床医を支援する。
VLMはしばしば「幻覚的」な振る舞いを示し、文脈的マルチモーダル情報に基づかないテキスト出力を生成する。
本稿では,臨床推論の象徴的表現を用いて医療知識にVLMを基盤とする新たなアライメントアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-05-29T23:19:28Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
我々は,emphDoctorをプレイヤとして,NPC間の動的医療相互作用をシミュレーションするフレームワークであるtextbfAI Hospitalを紹介した。
この設定は臨床シナリオにおけるLCMの現実的な評価を可能にする。
高品質な中国の医療記録とNPCを利用したマルチビュー医療評価ベンチマークを開発した。
論文 参考訳(メタデータ) (2024-02-15T06:46:48Z) - Exploring the Role of Explainability in AI-Assisted Embryo Selection [0.0]
体外受精は不妊治療において最も広く行われている治療法の一つである。
その主な課題の1つは、移植のための胚の評価と選択である。
深層学習に基づく手法が注目されているが、その不透明な性質は臨床における受容を損なう。
論文 参考訳(メタデータ) (2023-08-01T09:46:31Z) - Towards clinical AI fairness: A translational perspective [13.061383127966872]
本稿では,AIフェアネスの技術的視点と臨床的視点の相違について論じる。
知識ギャップを埋め、可能な解決策を提供するために、多分野の協力を提唱する。
論文 参考訳(メタデータ) (2023-04-26T12:38:40Z) - Informing clinical assessment by contextualizing post-hoc explanations
of risk prediction models in type-2 diabetes [50.8044927215346]
本研究は, 合併症リスク予測のシナリオを考察し, 患者の臨床状態に関する文脈に焦点を当てる。
我々は、リスク予測モデル推論に関する文脈を提示し、その受容性を評価するために、最先端のLLMをいくつか採用する。
本論文は,実世界における臨床症例における文脈説明の有効性と有用性を明らかにする最初のエンドツーエンド分析の1つである。
論文 参考訳(メタデータ) (2023-02-11T18:07:11Z) - Robotic Navigation Autonomy for Subretinal Injection via Intelligent
Real-Time Virtual iOCT Volume Slicing [88.99939660183881]
網膜下注射のための自律型ロボットナビゲーションの枠組みを提案する。
提案手法は,機器のポーズ推定方法,ロボットとi OCTシステム間のオンライン登録,およびインジェクションターゲットへのナビゲーションに適した軌道計画から構成される。
ブタ前眼の精度と再現性について実験を行った。
論文 参考訳(メタデータ) (2023-01-17T21:41:21Z) - VBridge: Connecting the Dots Between Features, Explanations, and Data
for Healthcare Models [85.4333256782337]
VBridgeは、臨床医の意思決定ワークフローに機械学習の説明をシームレスに組み込むビジュアル分析ツールである。
我々は,臨床医がMLの特徴に慣れていないこと,文脈情報の欠如,コホートレベルの証拠の必要性など,3つの重要な課題を特定した。
症例スタディと専門医4名のインタビューを通じて, VBridgeの有効性を実証した。
論文 参考訳(メタデータ) (2021-08-04T17:34:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。