論文の概要: Artificial intelligence techniques in inherited retinal diseases: A review
- arxiv url: http://arxiv.org/abs/2410.09105v1
- Date: Thu, 10 Oct 2024 03:14:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 16:38:28.647704
- Title: Artificial intelligence techniques in inherited retinal diseases: A review
- Title(参考訳): 遺伝性網膜疾患における人工知能技術
- Authors: Han Trinh, Jordan Vice, Jason Charng, Zahra Tajbakhsh, Khyber Alam, Fred K. Chen, Ajmal Mian,
- Abstract要約: 遺伝性網膜疾患(英: InheritedRetinal disease、IRD)は、進行性視力低下を引き起こす多様な遺伝性疾患群であり、労働年齢層の視覚障害の主要な原因である。
人工知能(AI)の最近の進歩は、これらの課題に対する有望な解決策を提供する。
このレビューは既存の研究を統合し、ギャップを特定し、IRDの診断と管理におけるAIの可能性の概要を提供する。
- 参考スコア(独自算出の注目度): 19.107474958408847
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Inherited retinal diseases (IRDs) are a diverse group of genetic disorders that lead to progressive vision loss and are a major cause of blindness in working-age adults. The complexity and heterogeneity of IRDs pose significant challenges in diagnosis, prognosis, and management. Recent advancements in artificial intelligence (AI) offer promising solutions to these challenges. However, the rapid development of AI techniques and their varied applications have led to fragmented knowledge in this field. This review consolidates existing studies, identifies gaps, and provides an overview of AI's potential in diagnosing and managing IRDs. It aims to structure pathways for advancing clinical applications by exploring AI techniques like machine learning and deep learning, particularly in disease detection, progression prediction, and personalized treatment planning. Special focus is placed on the effectiveness of convolutional neural networks in these areas. Additionally, the integration of explainable AI is discussed, emphasizing its importance in clinical settings to improve transparency and trust in AI-based systems. The review addresses the need to bridge existing gaps in focused studies on AI's role in IRDs, offering a structured analysis of current AI techniques and outlining future research directions. It concludes with an overview of the challenges and opportunities in deploying AI for IRDs, highlighting the need for interdisciplinary collaboration and the continuous development of robust, interpretable AI models to advance clinical applications.
- Abstract(参考訳): 遺伝性網膜疾患(英: InheritedRetinal disease、IRDs)は、進行性視覚障害を引き起こす多様な遺伝性疾患群であり、成人の視覚障害の主要な原因である。
IRDの複雑さと不均一性は、診断、予後、管理において重大な課題を生じさせる。
人工知能(AI)の最近の進歩は、これらの課題に対する有望な解決策を提供する。
しかし、AI技術とその様々な応用が急速に発展し、この分野における知識の断片化につながっている。
このレビューは既存の研究を統合し、ギャップを特定し、IRDの診断と管理におけるAIの可能性の概要を提供する。
機械学習やディープラーニングといったAI技術、特に疾患の検出、進行予測、パーソナライズされた治療計画の探求を通じて、臨床応用を進めるための経路を構築することを目的としている。
これらの領域における畳み込みニューラルネットワークの有効性に特に焦点が当てられている。
さらに、説明可能なAIの統合について論じ、AIベースのシステムの透明性と信頼性を改善するために、臨床環境におけるその重要性を強調している。
レビューでは、IRDにおけるAIの役割について、既存の研究のギャップを埋める必要性に対処し、現在のAI技術の構造化分析を提供し、今後の研究方向性を概説する。
IRDにAIをデプロイする際の課題と機会の概要は、学際的なコラボレーションの必要性と、臨床応用を進めるための堅牢で解釈可能なAIモデルの継続的な開発を強調している。
関連論文リスト
- Towards Privacy-aware Mental Health AI Models: Advances, Challenges, and Opportunities [61.633126163190724]
精神病は、社会的、個人的コストがかなり高い広範囲で不安定な状態である。
近年の人工知能(AI)の進歩は、うつ病、不安障害、双極性障害、統合失調症、外傷後ストレス障害などの病態を認識し、対処するための大きな可能性を秘めている。
データセットやトレーニング済みモデルからの機密データ漏洩のリスクを含むプライバシー上の懸念は、これらのAIシステムを実際の臨床環境にデプロイする上で、依然として重要な障壁である。
論文 参考訳(メタデータ) (2025-02-01T15:10:02Z) - Deep Learning for Ophthalmology: The State-of-the-Art and Future Trends [7.893548922956548]
人工知能(AI)の出現は眼科領域において新たな時代を迎えている。
本総説では, 深層学習(DL)の様々な眼環境における最先端の応用について検討する。
論文 参考訳(メタデータ) (2025-01-07T18:53:14Z) - Explainable Artificial Intelligence for Medical Applications: A Review [42.33274794442013]
本稿では、説明可能な人工知能(XAI)に関する最近の研究をレビューする。
視覚、オーディオ、マルチモーダルの観点からの医療実践に焦点を当てている。
我々は、将来の研究者や医療専門家に支援とガイダンスを提供することを目的として、これらのプラクティスを分類し、合成することに努めます。
論文 参考訳(メタデータ) (2024-11-15T11:31:06Z) - AI-Driven Healthcare: A Survey on Ensuring Fairness and Mitigating Bias [2.398440840890111]
AIアプリケーションは、診断精度、治療のパーソナライゼーション、患者の結果予測を大幅に改善した。
これらの進歩は、実質的な倫理的・公正性の課題ももたらした。
これらのバイアスは、医療提供の格差をもたらし、異なる人口集団の診断精度と治療結果に影響を与える可能性がある。
論文 参考訳(メタデータ) (2024-07-29T02:39:17Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
神経変性疾患(神経変性疾患、ND)は、伝統的に医学的診断とモニタリングのために広範囲の医療資源と人的努力を必要とする。
重要な疾患関連運動症状として、ヒトの歩行を利用して異なるNDを特徴づけることができる。
人工知能(AI)モデルの現在の進歩は、NDの識別と分類のための自動歩行分析を可能にする。
論文 参考訳(メタデータ) (2024-05-21T06:44:40Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
この研究は、人工知能を自律走行車(AV)に統合する複雑さを探求する
AIコンポーネントがもたらした課題と、テスト手順への影響を調べます。
本稿は、重要な課題を特定し、AV技術におけるAIの研究・開発に向けた今後の方向性を提案する。
論文 参考訳(メタデータ) (2024-02-21T08:29:42Z) - Current and future roles of artificial intelligence in retinopathy of
prematurity [14.333209377077058]
未熟児の網膜症 (ROP) は重篤な病態である。
近年のディープラーニング(DL)、特に畳み込みニューラルネットワーク(CNN)は、ROPの検出と分類を大幅に改善している。
i-ROP 深層学習 (i-ROP-DL) システムもまた,高次疾患の検出を約束し,信頼性なROP 診断能を提供する。
論文 参考訳(メタデータ) (2024-02-15T14:35:02Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
機械学習とAIの最近の進歩は、技術革新、製品開発、社会全体を破壊している。
AIは、科学的な実践とモデル発見のための高品質なデータの大規模なデータセットへのアクセスがより困難であるため、基礎科学にはあまり貢献していない。
ここでは、科学的な発見に対するAI駆動、自動化、クローズドループアプローチの側面を調査し、調査する。
論文 参考訳(メタデータ) (2023-07-09T21:16:56Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
この分野でのAIのメリット、課題、欠点についてレビューする。
データ拡張、説明可能なAIの使用、従来の実験手法とAIの統合についても論じている。
論文 参考訳(メタデータ) (2022-12-08T23:23:39Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z) - Achievements and Challenges in Explaining Deep Learning based
Computer-Aided Diagnosis Systems [4.9449660544238085]
我々は、既知の疾患基準の検証のための説明可能なAIの開発における初期の成果について論じる。
我々は、臨床意思決定支援ツールとしてのAIの実践的応用の道に立つ、残る課題をいくつか強調する。
論文 参考訳(メタデータ) (2020-11-26T08:08:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。