Tailoring CIPSI expansions for QMC calculations of electronic
excitations: the case study of thiophene
- URL: http://arxiv.org/abs/2103.01158v1
- Date: Mon, 1 Mar 2021 17:50:01 GMT
- Title: Tailoring CIPSI expansions for QMC calculations of electronic
excitations: the case study of thiophene
- Authors: Monika Dash and Saverio Moroni and Claudia Filippi and Anthony Scemama
- Abstract summary: We use the CIPSI selection criterion for excited states of the same symmetry as the ground state, generating expansions from a common orbital set.
We compute the lowest, bright excited state of thiophene, which is challenging due to its significant multireference character.
We relax the ground- and excited-state structures following the corresponding root in variational Monte Carlo and obtain bond lengths which are accurate to better than 0.01AA.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The perturbatively selected configuration interaction scheme (CIPSI) is
particularly effective in constructing determinantal expansions for quantum
Monte Carlo (QMC) simulations with Jastrow-Slater wave functions: fast and
smooth convergence of ground-state properties, as well as balanced descriptions
of ground- and excited-states of different symmetries have been reported. In
particular, accurate excitation energies have been obtained by the pivotal
requirement of using CIPSI expansions with similar second-order perturbation
corrections for each state, that is, similar estimated errors with respect to
the full configuration interaction limit. Here we elaborate on the CIPSI
selection criterion for excited states of the same symmetry as the ground
state, generating expansions from a common orbital set. Using these expansions
in QMC as determinantal components of Jastrow-Slater wave functions, we compute
the lowest, bright excited state of thiophene, which is challenging due to its
significant multireference character. The resulting vertical excitation
energies are within 0.05~eV of the best theoretical estimates, already with
expansions of only a few thousand determinants. Furthermore, we relax the
ground- and excited-state structures following the corresponding root in
variational Monte Carlo and obtain bond lengths which are accurate to better
than 0.01~\AA. Therefore, while the full treatment at the CIPSI level of this
system would be quite demanding, in QMC we can compute high-quality excitation
energies and excited-state structural parameters building on affordable CIPSI
expansions with relatively few, well chosen determinants.
Related papers
- Tensor Product Structure Geometry under Unitary Channels [0.0]
Locality is typically defined with respect to a product structure (TPS) which identifies the local subsystems of the quantum system.
We show that this TPS distance is related to scrambling properties of the dynamics between the local subsystems and coincides with the power of entangling of 2-unitaries.
For Hamiltonian evolutions at short times, the characteristic timescale of the TPS distance depends on scrambling rates determined by the strength of interactions between the local subsystems.
arXiv Detail & Related papers (2024-10-03T19:02:22Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Generalized Free Cumulants for Quantum Chaotic Systems [0.0]
The eigenstate thermalization hypothesis (ETH) is the leading conjecture for the emergence of statistical mechanics in isolated quantum systems.
We show that the ETH is a sufficient mechanism for thermalization, in general.
In particular, we show that reduced density matrices relax to their equilibrium form and that systems obey the Page curve at late times.
arXiv Detail & Related papers (2024-01-24T22:04:41Z) - Eigenstate correlations, the eigenstate thermalization hypothesis, and quantum information dynamics in chaotic many-body quantum systems [0.0]
We consider correlations between eigenstates specific to spatially extended systems and that characterise entanglement dynamics and operator spreading.
The correlations associated with scrambling of quantum information lie outside the standard framework established by the eigenstate thermalisation hypothesis (ETH)
We establish the simplest correlation function that captures these correlations and discuss features of its behaviour that are expected to be universal at long distances and low energies.
arXiv Detail & Related papers (2023-09-22T16:28:15Z) - Ground or Excited State: a State-Specific Variational Quantum
Eigensolver for Them All [0.0]
Variational Quantum Eigensolver (VQE) provides a lucrative platform to determine molecular energetics in quantum devices.
We propose a unified VQE framework that treats the ground and excited states in the same footings.
We introduce the notion of totally symmetric, spin-scalar unitary which maintains the purity of the reference at each step of the optimization.
arXiv Detail & Related papers (2023-08-21T13:39:58Z) - Dissipative preparation and stabilization of many-body quantum states in
a superconducting qutrit array [55.41644538483948]
We present and analyze a protocol for driven-dissipatively preparing and stabilizing a manifold of quantum manybody entangled states.
We perform theoretical modeling of this platform via pulse-level simulations based on physical features of real devices.
Our work shows the capacity of driven-dissipative superconducting cQED systems to host robust and self-corrected quantum manybody states.
arXiv Detail & Related papers (2023-03-21T18:02:47Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Three-fold way of entanglement dynamics in monitored quantum circuits [68.8204255655161]
We investigate the measurement-induced entanglement transition in quantum circuits built upon Dyson's three circular ensembles.
We obtain insights into the interplay between the local entanglement generation by the gates and the entanglement reduction by the measurements.
arXiv Detail & Related papers (2022-01-28T17:21:15Z) - Out-of-time-order correlations and the fine structure of eigenstate
thermalisation [58.720142291102135]
Out-of-time-orderors (OTOCs) have become established as a tool to characterise quantum information dynamics and thermalisation.
We show explicitly that the OTOC is indeed a precise tool to explore the fine details of the Eigenstate Thermalisation Hypothesis (ETH)
We provide an estimation of the finite-size scaling of $omega_textrmGOE$ for the general class of observables composed of sums of local operators in the infinite-temperature regime.
arXiv Detail & Related papers (2021-03-01T17:51:46Z) - Superstripes and quasicrystals in bosonic systems with hard-soft corona
interactions [0.0]
We investigate the effect of quantum fluctuations on the phases of bosonic particles with isotropic hard-soft corona interactions.
A rich phase diagram, parametrized by the density of particles, reveals supersolid stripes, kagome and triangular crystals in the low-density regime.
In the high-density limit we observe patterns with 12-fold rotational symmetry compatible with periodic approximants of quasicrystalline phases.
arXiv Detail & Related papers (2020-09-21T22:24:19Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.