論文の概要: Emotion Dynamics in Movie Dialogues
- arxiv url: http://arxiv.org/abs/2103.01345v1
- Date: Mon, 1 Mar 2021 23:02:16 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-05 03:07:32.487703
- Title: Emotion Dynamics in Movie Dialogues
- Title(参考訳): 映画対話における感情ダイナミクス
- Authors: Will E. Hipson and Saif M. Mohammad
- Abstract要約: 発話を通して感情のダイナミクスを追跡する枠組みを提案する。
我々はこの手法を用いて、映画キャラクタの感情的弧をトレースする。
このような何千もの文字アークを分析し、ストーリーのより広い理解を知らせる仮説をテストします。
- 参考スコア(独自算出の注目度): 25.289525325790414
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Emotion dynamics is a framework for measuring how an individual's emotions
change over time. It is a powerful tool for understanding how we behave and
interact with the world. In this paper, we introduce a framework to track
emotion dynamics through one's utterances. Specifically we introduce a number
of utterance emotion dynamics (UED) metrics inspired by work in Psychology. We
use this approach to trace emotional arcs of movie characters. We analyze
thousands of such character arcs to test hypotheses that inform our broader
understanding of stories. Notably, we show that there is a tendency for
characters to use increasingly more negative words and become increasingly
emotionally discordant with each other until about 90 percent of the narrative
length. UED also has applications in behavior studies, social sciences, and
public health.
- Abstract(参考訳): 感情ダイナミクスは、個人の感情が時間とともにどのように変化するかを測定するためのフレームワークです。
これは私たちの行動や世界との相互作用を理解するための強力なツールです。
本稿では,発話を通して感情のダイナミクスを追跡する枠組みを提案する。
具体的には,心理学の研究に触発された発話感情ダイナミクス(ued)メトリクスをいくつか紹介する。
我々はこの手法を用いて、映画キャラクタの感情的弧をトレースする。
このような何千もの文字アークを分析し、ストーリーのより広い理解を知らせる仮説をテストします。
特に、物語の長さの約90%まで、文字がますますネガティブな言葉を使い、感情的に不一致になる傾向があることを示しています。
UEDは行動研究、社会科学、公衆衛生にも応用されている。
関連論文リスト
- Think out Loud: Emotion Deducing Explanation in Dialogues [57.90554323226896]
対話における感情推論(Emotion Deducing Explanation in Dialogues)を提案する。
EDENは感情と原因を明確な考え方で認識する。
大規模言語モデル(LLM)が感情や原因をよりよく認識するのに役立ちます。
論文 参考訳(メタデータ) (2024-06-07T08:58:29Z) - Personality-affected Emotion Generation in Dialog Systems [67.40609683389947]
ダイアログシステムに与えられた個性に基づいて感情を生成する新しいタスクであるパーソナリティ影響感情生成を提案する。
本課題の課題,すなわち,(1)個性と感情的要因を不均一に統合し,(2)対話場面における多粒性感情情報を抽出する。
その結果,感情生成性能はマクロF1では13%,重み付きF1では5%向上することが示唆された。
論文 参考訳(メタデータ) (2024-04-03T08:48:50Z) - Emotion Granularity from Text: An Aggregate-Level Indicator of Mental Health [25.166884750592175]
心理学において、個人の感情概念を区別する能力の変化を感情の粒度と呼ぶ。
高い感情の粒度は、より良い精神と身体の健康と結びついている。
低感情の粒度は、不適応な感情制御戦略や健康状態の悪化と結びついている。
論文 参考訳(メタデータ) (2024-03-04T18:12:10Z) - Dynamic Causal Disentanglement Model for Dialogue Emotion Detection [77.96255121683011]
隠れ変数分離に基づく動的因果解離モデルを提案する。
このモデルは、対話の内容を効果的に分解し、感情の時間的蓄積を調べる。
具体的には,発話と隠れ変数の伝搬を推定する動的時間的ゆがみモデルを提案する。
論文 参考訳(メタデータ) (2023-09-13T12:58:09Z) - Utterance Emotion Dynamics in Children's Poems: Emotional Changes Across
Age [29.467916405081272]
我々は,様々な年齢の子どもが書いた詩から決定された感情力学の特徴を,辞書と機械学習に基づく手法を用いて定量化する。
年齢とともに、感情的変動、上昇率(感情的反応性)、回復率(感情的規制)が増加する。
論文 参考訳(メタデータ) (2023-06-08T17:38:14Z) - How you feelin'? Learning Emotions and Mental States in Movie Scenes [9.368590075496149]
我々は、感情理解を、映画シーンのレベルで多様なマルチラベルの感情の集合を予測するものとして定式化する。
EmoTxはマルチモーダルトランスフォーマーベースのアーキテクチャで、ビデオ、複数の文字、ダイアログの発話を取り込み、共同予測を行う。
論文 参考訳(メタデータ) (2023-04-12T06:31:14Z) - Why Do You Feel This Way? Summarizing Triggers of Emotions in Social
Media Posts [61.723046082145416]
CovidET (Emotions and their Triggers during Covid-19)は、COVID-19に関連する英国のReddit投稿1,900件のデータセットである。
我々は、感情を共同で検出し、感情のトリガーを要約する強力なベースラインを開発する。
分析の結果,コビデットは感情特異的要約における新たな課題と,長文のソーシャルメディア投稿におけるマルチ感情検出の課題が示唆された。
論文 参考訳(メタデータ) (2022-10-22T19:10:26Z) - Speech Synthesis with Mixed Emotions [77.05097999561298]
異なる感情の音声サンプル間の相対的な差を測定する新しい定式化を提案する。
次に、私たちの定式化を、シーケンスからシーケンスまでの感情的なテキストから音声へのフレームワークに組み込む。
実行時に、感情属性ベクトルを手動で定義し、所望の感情混合を生成するためにモデルを制御する。
論文 参考訳(メタデータ) (2022-08-11T15:45:58Z) - Emotion Intensity and its Control for Emotional Voice Conversion [77.05097999561298]
感情音声変換(EVC)は、言語内容と話者のアイデンティティを保ちながら、発話の感情状態を変換しようとする。
本稿では,感情の強さを明示的に表現し,制御することを目的とする。
本稿では,話者スタイルを言語内容から切り離し,連続した空間に埋め込み,感情埋め込みのプロトタイプを形成するスタイルに符号化することを提案する。
論文 参考訳(メタデータ) (2022-01-10T02:11:25Z) - Emotion Recognition under Consideration of the Emotion Component Process
Model [9.595357496779394]
我々はScherer (2005) による感情成分プロセスモデル (CPM) を用いて感情コミュニケーションを説明する。
CPMは、感情は、出来事、すなわち主観的感情、認知的評価、表現、生理的身体反応、動機的行動傾向に対する様々なサブコンポーネントの協調過程であると述べている。
Twitter上での感情は、主に出来事の説明や主観的な感情の報告によって表現されているのに対し、文献では、著者はキャラクターが何をしているかを記述し、解釈を読者に任せることを好む。
論文 参考訳(メタデータ) (2021-07-27T15:53:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。