Adaptive Transmission Scheduling in Wireless Networks for Asynchronous
Federated Learning
- URL: http://arxiv.org/abs/2103.01422v1
- Date: Tue, 2 Mar 2021 02:28:20 GMT
- Title: Adaptive Transmission Scheduling in Wireless Networks for Asynchronous
Federated Learning
- Authors: Hyun-Suk Lee, Jang-Won Lee
- Abstract summary: We study asynchronous federated learning (FL) in a wireless learning network (WDLN)
We formulate an Asynchronous Learning-aware transmission Scheduling (ALS) problem to maximize the effectivity score.
We show via simulations that the models trained by our ALS algorithms achieve performances close to that by an ideal benchmark.
- Score: 13.490583662839725
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we study asynchronous federated learning (FL) in a wireless
distributed learning network (WDLN). To allow each edge device to use its local
data more efficiently via asynchronous FL, transmission scheduling in the WDLN
for asynchronous FL should be carefully determined considering system
uncertainties, such as time-varying channel and stochastic data arrivals, and
the scarce radio resources in the WDLN. To address this, we propose a metric,
called an effectivity score, which represents the amount of learning from
asynchronous FL. We then formulate an Asynchronous Learning-aware transmission
Scheduling (ALS) problem to maximize the effectivity score and develop three
ALS algorithms, called ALSA-PI, BALSA, and BALSA-PO, to solve it. If the
statistical information about the uncertainties is known, the problem can be
optimally and efficiently solved by ALSA-PI. Even if not, it can be still
optimally solved by BALSA that learns the uncertainties based on a Bayesian
approach using the state information reported from devices. BALSA-PO
suboptimally solves the problem, but it addresses a more restrictive WDLN in
practice, where the AP can observe a limited state information compared with
the information used in BALSA. We show via simulations that the models trained
by our ALS algorithms achieve performances close to that by an ideal benchmark
and outperform those by other state-of-the-art baseline scheduling algorithms
in terms of model accuracy, training loss, learning speed, and robustness of
learning. These results demonstrate that the adaptive scheduling strategy in
our ALS algorithms is effective to asynchronous FL.
Related papers
- Digital Twin-Assisted Federated Learning with Blockchain in Multi-tier Computing Systems [67.14406100332671]
In Industry 4.0 systems, resource-constrained edge devices engage in frequent data interactions.
This paper proposes a digital twin (DT) and federated digital twin (FL) scheme.
The efficacy of our proposed cooperative interference-based FL process has been verified through numerical analysis.
arXiv Detail & Related papers (2024-11-04T17:48:02Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
This paper focuses on performance analysis and optimization for wireless FL, considering data heterogeneity, combined with wireless resource allocation.
We formulate the loss function minimization problem, under constraints on long-term energy consumption and latency, and jointly optimize client scheduling, resource allocation, and the number of local training epochs (CRE)
Experiments on real-world datasets demonstrate that the proposed algorithm outperforms other benchmarks in terms of the learning accuracy and energy consumption.
arXiv Detail & Related papers (2023-08-04T04:18:01Z) - Spatio-Temporal Deep Learning-Assisted Reduced Security-Constrained Unit
Commitment [0.5076419064097734]
Security-constrained unit commitment (SCUC) is a computationally complex process utilized in power system day-ahead scheduling and market clearing.
In this paper, an advanced machine learning (ML) model is used to study the patterns in power system historical data, which inherently considers both spatial and temporal (ST) correlations in constraints.
The ST-correlated ML model is trained to understand spatial correlation by considering graph neural networks (GNN) whereas temporal sequences are studied using long short-term memory (LSTM) networks.
arXiv Detail & Related papers (2023-06-02T14:31:24Z) - FLCC: Efficient Distributed Federated Learning on IoMT over CSMA/CA [0.0]
Federated Learning (FL) has emerged as a promising approach for privacy preservation.
This article investigates the performance of FL on an application that might be used to improve a remote healthcare system over ad hoc networks.
We present two metrics to evaluate the network performance: 1) probability of successful transmission while minimizing the interference, and 2) performance of distributed FL model in terms of accuracy and loss.
arXiv Detail & Related papers (2023-03-29T16:36:42Z) - Scheduling and Aggregation Design for Asynchronous Federated Learning
over Wireless Networks [56.91063444859008]
Federated Learning (FL) is a collaborative machine learning framework that combines on-device training and server-based aggregation.
We propose an asynchronous FL design with periodic aggregation to tackle the straggler issue in FL systems.
We show that an age-aware'' aggregation weighting design can significantly improve the learning performance in an asynchronous FL setting.
arXiv Detail & Related papers (2022-12-14T17:33:01Z) - Faster Adaptive Federated Learning [84.38913517122619]
Federated learning has attracted increasing attention with the emergence of distributed data.
In this paper, we propose an efficient adaptive algorithm (i.e., FAFED) based on momentum-based variance reduced technique in cross-silo FL.
arXiv Detail & Related papers (2022-12-02T05:07:50Z) - Performance Optimization for Variable Bitwidth Federated Learning in
Wireless Networks [103.22651843174471]
This paper considers improving wireless communication and computation efficiency in federated learning (FL) via model quantization.
In the proposed bitwidth FL scheme, edge devices train and transmit quantized versions of their local FL model parameters to a coordinating server, which aggregates them into a quantized global model and synchronizes the devices.
We show that the FL training process can be described as a Markov decision process and propose a model-based reinforcement learning (RL) method to optimize action selection over iterations.
arXiv Detail & Related papers (2022-09-21T08:52:51Z) - Over-the-Air Federated Learning via Second-Order Optimization [37.594140209854906]
Federated learning (FL) could result in task-oriented data traffic flows over wireless networks with limited radio resources.
We propose a novel over-the-air second-order federated optimization algorithm to simultaneously reduce the communication rounds and enable low-latency global model aggregation.
arXiv Detail & Related papers (2022-03-29T12:39:23Z) - Communication-Efficient Stochastic Zeroth-Order Optimization for
Federated Learning [28.65635956111857]
Federated learning (FL) enables edge devices to collaboratively train a global model without sharing their private data.
To enhance the training efficiency of FL, various algorithms have been proposed, ranging from first-order computation to first-order methods.
arXiv Detail & Related papers (2022-01-24T08:56:06Z) - Communication-Efficient Device Scheduling for Federated Learning Using
Stochastic Optimization [26.559267845906746]
Time learning (FL) is a useful tool in distributed machine learning that utilizes users' local datasets in a privacy-preserving manner.
In this paper, we provide a novel convergence analysis non-efficient convergence bound algorithm.
We also develop a new selection and power allocation algorithm that minimizes a function of the convergence bound and the average communication under a power constraint.
arXiv Detail & Related papers (2022-01-19T23:25:24Z) - Delay Minimization for Federated Learning Over Wireless Communication
Networks [172.42768672943365]
The problem of delay computation for federated learning (FL) over wireless communication networks is investigated.
A bisection search algorithm is proposed to obtain the optimal solution.
Simulation results show that the proposed algorithm can reduce delay by up to 27.3% compared to conventional FL methods.
arXiv Detail & Related papers (2020-07-05T19:00:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.