Chain-structured neural architecture search for financial time series forecasting
- URL: http://arxiv.org/abs/2403.14695v2
- Date: Wed, 04 Dec 2024 11:58:41 GMT
- Title: Chain-structured neural architecture search for financial time series forecasting
- Authors: Denis Levchenko, Efstratios Rappos, Shabnam Ataee, Biagio Nigro, Stephan Robert-Nicoud,
- Abstract summary: Neural architecture search (NAS) emerged as a way to automatically optimize neural networks for a specific task and dataset.
Despite an abundance of research on NAS for images and natural language applications, similar studies for time series data are lacking.
We compare three popular strategies on chain-structured search spaces: Bayesian optimization, the hyperband method, and reinforcement learning learning.
- Score: 0.0
- License:
- Abstract: Neural architecture search (NAS) emerged as a way to automatically optimize neural networks for a specific task and dataset. Despite an abundance of research on NAS for images and natural language applications, similar studies for time series data are lacking. Among NAS search spaces, chain-structured are the simplest and most applicable to small datasets like time series. We compare three popular NAS strategies on chain-structured search spaces: Bayesian optimization (specifically Tree-structured Parzen Estimator), the hyperband method, and reinforcement learning in the context of financial time series forecasting. These strategies were employed to optimize simple well-understood neural architectures like the MLP, 1D CNN, and RNN, with more complex temporal fusion transformers (TFT) and their own optimizers included for comparison. We find Bayesian optimization and the hyperband method performing best among the strategies, and RNN and 1D CNN best among the architectures, but all methods were very close to each other with a high variance due to the difficulty of working with financial datasets. We discuss our approach to overcome the variance and provide implementation recommendations for future users and researchers.
Related papers
- A Pairwise Comparison Relation-assisted Multi-objective Evolutionary Neural Architecture Search Method with Multi-population Mechanism [58.855741970337675]
Neural architecture search (NAS) enables re-searchers to automatically explore vast search spaces and find efficient neural networks.
NAS suffers from a key bottleneck, i.e., numerous architectures need to be evaluated during the search process.
We propose the SMEM-NAS, a pairwise com-parison relation-assisted multi-objective evolutionary algorithm based on a multi-population mechanism.
arXiv Detail & Related papers (2024-07-22T12:46:22Z) - DCP-NAS: Discrepant Child-Parent Neural Architecture Search for 1-bit
CNNs [53.82853297675979]
1-bit convolutional neural networks (CNNs) with binary weights and activations show their potential for resource-limited embedded devices.
One natural approach is to use 1-bit CNNs to reduce the computation and memory cost of NAS.
We introduce Discrepant Child-Parent Neural Architecture Search (DCP-NAS) to efficiently search 1-bit CNNs.
arXiv Detail & Related papers (2023-06-27T11:28:29Z) - Neural Architecture Search for Spiking Neural Networks [10.303676184878896]
Spiking Neural Networks (SNNs) have gained huge attention as a potential energy-efficient alternative to conventional Artificial Neural Networks (ANNs)
Most prior SNN methods use ANN-like architectures, which could provide sub-optimal performance for temporal sequence processing of binary information in SNNs.
We introduce a novel Neural Architecture Search (NAS) approach for finding better SNN architectures.
arXiv Detail & Related papers (2022-01-23T16:34:27Z) - Task-Adaptive Neural Network Retrieval with Meta-Contrastive Learning [34.27089256930098]
We propose a novel neural network retrieval method, which retrieves the most optimal pre-trained network for a given task.
We train this framework by meta-learning a cross-modal latent space with contrastive loss, to maximize the similarity between a dataset and a network.
We validate the efficacy of our method on ten real-world datasets, against existing NAS baselines.
arXiv Detail & Related papers (2021-03-02T06:30:51Z) - Weak NAS Predictors Are All You Need [91.11570424233709]
Recent predictor-based NAS approaches attempt to solve the problem with two key steps: sampling some architecture-performance pairs and fitting a proxy accuracy predictor.
We shift the paradigm from finding a complicated predictor that covers the whole architecture space to a set of weaker predictors that progressively move towards the high-performance sub-space.
Our method costs fewer samples to find the top-performance architectures on NAS-Bench-101 and NAS-Bench-201, and it achieves the state-of-the-art ImageNet performance on the NASNet search space.
arXiv Detail & Related papers (2021-02-21T01:58:43Z) - Trilevel Neural Architecture Search for Efficient Single Image
Super-Resolution [127.92235484598811]
This paper proposes a trilevel neural architecture search (NAS) method for efficient single image super-resolution (SR)
For modeling the discrete search space, we apply a new continuous relaxation on the discrete search spaces to build a hierarchical mixture of network-path, cell-operations, and kernel-width.
An efficient search algorithm is proposed to perform optimization in a hierarchical supernet manner.
arXiv Detail & Related papers (2021-01-17T12:19:49Z) - Effective, Efficient and Robust Neural Architecture Search [4.273005643715522]
Recent advances in adversarial attacks show the vulnerability of deep neural networks searched by Neural Architecture Search (NAS)
We propose an Effective, Efficient, and Robust Neural Architecture Search (E2RNAS) method to search a neural network architecture by taking the performance, robustness, and resource constraint into consideration.
Experiments on benchmark datasets show that the proposed E2RNAS method can find adversarially robust architectures with optimized model size and comparable classification accuracy.
arXiv Detail & Related papers (2020-11-19T13:46:23Z) - Smooth Variational Graph Embeddings for Efficient Neural Architecture
Search [41.62970837629573]
We propose a two-sided variational graph autoencoder, which allows to smoothly encode and accurately reconstruct neural architectures from various search spaces.
We evaluate the proposed approach on neural architectures defined by the ENAS approach, the NAS-Bench-101 and the NAS-Bench-201 search spaces.
arXiv Detail & Related papers (2020-10-09T17:05:41Z) - FBNetV3: Joint Architecture-Recipe Search using Predictor Pretraining [65.39532971991778]
We present an accuracy predictor that scores architecture and training recipes jointly, guiding both sample selection and ranking.
We run fast evolutionary searches in just CPU minutes to generate architecture-recipe pairs for a variety of resource constraints.
FBNetV3 makes up a family of state-of-the-art compact neural networks that outperform both automatically and manually-designed competitors.
arXiv Detail & Related papers (2020-06-03T05:20:21Z) - DC-NAS: Divide-and-Conquer Neural Architecture Search [108.57785531758076]
We present a divide-and-conquer (DC) approach to effectively and efficiently search deep neural architectures.
We achieve a $75.1%$ top-1 accuracy on the ImageNet dataset, which is higher than that of state-of-the-art methods using the same search space.
arXiv Detail & Related papers (2020-05-29T09:02:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.