論文の概要: Interpretable Multi-Modal Hate Speech Detection
- arxiv url: http://arxiv.org/abs/2103.01616v1
- Date: Tue, 2 Mar 2021 10:12:26 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-06 00:54:31.296922
- Title: Interpretable Multi-Modal Hate Speech Detection
- Title(参考訳): 解釈可能なマルチモーダルヘイトスピーチ検出
- Authors: Prashanth Vijayaraghavan, Hugo Larochelle, Deb Roy
- Abstract要約: 特定の憎悪表現が作られる社会文化的文脈とともに、テキストの意味を効果的に捉えることができるディープニューラルマルチモーダルモデルを提案する。
我々のモデルは、既存のヘイトスピーチ分類アプローチを上回ることができる。
- 参考スコア(独自算出の注目度): 32.36781061930129
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With growing role of social media in shaping public opinions and beliefs
across the world, there has been an increased attention to identify and counter
the problem of hate speech on social media. Hate speech on online spaces has
serious manifestations, including social polarization and hate crimes. While
prior works have proposed automated techniques to detect hate speech online,
these techniques primarily fail to look beyond the textual content. Moreover,
few attempts have been made to focus on the aspects of interpretability of such
models given the social and legal implications of incorrect predictions. In
this work, we propose a deep neural multi-modal model that can: (a) detect hate
speech by effectively capturing the semantics of the text along with
socio-cultural context in which a particular hate expression is made, and (b)
provide interpretable insights into decisions of our model. By performing a
thorough evaluation of different modeling techniques, we demonstrate that our
model is able to outperform the existing state-of-the-art hate speech
classification approaches. Finally, we show the importance of social and
cultural context features towards unearthing clusters associated with different
categories of hate.
- Abstract(参考訳): 世界中の世論や信念の形成におけるソーシャルメディアの役割が高まる中、ソーシャルメディア上でのヘイトスピーチの問題を識別し、対処するための関心が高まっています。
オンライン空間でのヘイトスピーチには、社会的分極や憎悪犯罪など、深刻な兆候がある。
以前の研究ではヘイトスピーチをオンラインで検出する自動化技術が提案されているが、これらの手法はテキストコンテンツを超えては見られない。
さらに、誤った予測の社会的および法的意味から、そのようなモデルの解釈可能性の側面に焦点を合わせる試みは、ほとんど行われていない。
本研究は, 特定の憎悪表現が作られる社会文化的文脈とともに, テキストの意味を効果的に捉えることによって, ヘイトスピーチを効果的に検出し, (b) モデルの決定に対する解釈可能な洞察を提供する, ディープニューラルマルチモーダルモデルを提案する。
異なるモデリング手法の徹底的な評価を行うことで,既存のヘイトスピーチ分類手法を上回るモデルであることが実証された。
最後に、異なるカテゴリの憎悪に関連する未知のクラスタに対する社会的および文化的コンテキスト機能の重要性を示します。
関連論文リスト
- Demarked: A Strategy for Enhanced Abusive Speech Moderation through Counterspeech, Detoxification, and Message Management [71.99446449877038]
本研究では, 重度尺度, (ii) ターゲットの存在, (iii) 文脈尺度, (iv) 法的尺度の4つの側面を基礎として, より包括的手法であるDemarcation scoreing abusive speechを提案する。
本研究は,ネット上での虐待的スピーチを効果的に解決するための今後の戦略を明らかにすることを目的としている。
論文 参考訳(メタデータ) (2024-06-27T21:45:33Z) - Towards Interpretable Hate Speech Detection using Large Language Model-extracted Rationales [15.458557611029518]
ソーシャルメディアプラットフォームは、ユーザーが対人的な議論を行い、意見を述べるための重要な場である。
ヘイトスピーチのインスタンスを自動的に識別し、フラグを付ける必要がある。
本稿では,現在最先端の大規模言語モデル (LLM) を用いて,入力テキストから有理形の特徴を抽出することを提案する。
論文 参考訳(メタデータ) (2024-03-19T03:22:35Z) - Hate Speech Detection via Dual Contrastive Learning [25.878271501274245]
本稿では,ヘイトスピーチ検出のための新しい双方向コントラスト学習フレームワークを提案する。
本フレームワークは,自己教師型学習と教師型学習の損失を協調的に最適化し,スパンレベルの情報を取得する。
公開可能な2つの英語データセットの実験を行い、実験結果から、提案モデルが最先端のモデルより優れていることが示された。
論文 参考訳(メタデータ) (2023-07-10T13:23:36Z) - CoSyn: Detecting Implicit Hate Speech in Online Conversations Using a
Context Synergized Hyperbolic Network [52.85130555886915]
CoSynは、オンライン会話における暗黙のヘイトスピーチを検出するために、ユーザと会話のコンテキストを明示的に組み込んだ、コンテキスト中心のニューラルネットワークである。
我々は、CoSynが、1.24%から57.8%の範囲で絶対的に改善された暗黙のヘイトスピーチを検出することで、我々のベースラインを全て上回っていることを示す。
論文 参考訳(メタデータ) (2023-03-02T17:30:43Z) - Qualitative Analysis of a Graph Transformer Approach to Addressing Hate
Speech: Adapting to Dynamically Changing Content [8.393770595114763]
我々は、ソーシャルネットワークにおけるヘイトスピーチ検出のために、このソリューションの詳細な質的分析を提供する。
重要な洞察は、コンテキストの概念に関する推論に焦点が当てられていることは、オンライン投稿のマルチモーダル分析をサポートするのに十分な位置にあるということだ。
この問題が特に動的変化のテーマとどのように関係しているかを考察して結論付けます。
論文 参考訳(メタデータ) (2023-01-25T23:32:32Z) - Countering Malicious Content Moderation Evasion in Online Social
Networks: Simulation and Detection of Word Camouflage [64.78260098263489]
ツイストとカモフラージュキーワードは、プラットフォームコンテンツモデレーションシステムを回避する最もよく使われるテクニックである。
本稿では,コンテンツ回避の新たな手法をシミュレートし,検出する多言語ツールを開発することにより,悪意ある情報に対する対処に大きく貢献する。
論文 参考訳(メタデータ) (2022-12-27T16:08:49Z) - Deep Learning for Hate Speech Detection: A Comparative Study [54.42226495344908]
ここでは, ディープ・ヘイト・音声検出法と浅いヘイト・音声検出法を大規模に比較した。
私たちの目標は、この地域の進歩を照らし、現在の最先端の強みと弱点を特定することです。
そこで我々は,ヘイトスピーチ検出の実践的利用に関するガイダンスの提供,最先端の定量化,今後の研究方向の特定を目的としている。
論文 参考訳(メタデータ) (2022-02-19T03:48:20Z) - Addressing the Challenges of Cross-Lingual Hate Speech Detection [115.1352779982269]
本稿では,低リソース言語におけるヘイトスピーチ検出を支援するために,言語間移動学習に着目した。
言語間単語の埋め込みを利用して、ソース言語上でニューラルネットワークシステムをトレーニングし、ターゲット言語に適用します。
本研究では,ヘイトスピーチデータセットのラベル不均衡の問題について検討する。なぜなら,ヘイトサンプルと比較して非ヘイトサンプルの比率が高いことがモデル性能の低下につながることが多いからだ。
論文 参考訳(メタデータ) (2022-01-15T20:48:14Z) - DeepHate: Hate Speech Detection via Multi-Faceted Text Representations [8.192671048046687]
DeepHateは、単語埋め込み、感情、トピック情報などの多面的なテキスト表現を組み合わせた、新しいディープラーニングモデルです。
大規模な実験を行い、3つの大規模公開現実世界のデータセットでDeepHateを評価します。
論文 参考訳(メタデータ) (2021-03-14T16:11:30Z) - Investigating Deep Learning Approaches for Hate Speech Detection in
Social Media [20.974715256618754]
表現の自由の誤用は、様々なサイバー犯罪や反社会的活動の増加につながった。
ヘイトスピーチ(Hate speech)は、社会的ファブリックの完全性に脅威をもたらす可能性があるため、他の問題と同様に真剣に対処する必要がある。
本稿では,ソーシャルメディアにおける様々なヘイトスピーチの検出に様々な埋め込みを応用したディープラーニングアプローチを提案する。
論文 参考訳(メタデータ) (2020-05-29T17:28:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。